
ANL/FE-85-4 ANL/FE-85-4 

•/fCfKn Of 

ANL-W TeclirjiccI Library 

THE SYSTEMS ANALYSIS LANGUAGE TRANSLATOR (SALT): 

PROGRAMMER'S GUIDE 

by 

Howard K. Geyer and Gregory F. Berry 

^HONAl 

FOSSIL ENERGY PROGRAM 

ARGONNE NATIONAL LABORATORY, ARGONNE, ILLINOIS 

Operated by THE UNIVERSITY OF CHICAGO 

for the U. S. DEPARTMENT OF ENERGY 

under Contract W-31-109-Eng-38 



Argonne National Laboratory, with facilities in the states of Illinois and Idaho, is 
owned by the United States government, and operated by The University of Chicago 
under the provisions of a contract with the Department of Energy. 

DISCLAIMER 

This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United 
States Government nor any agency thereof, nor any of their 
employees, makes any warranty, express or implied, or assumes 
any legal liability or responsibility for the accuracy, com­
pleteness, or usefulness of any information, apparatus, product, 
or process disclosed, or represents that its use would not infringe 
privately owned rights. Reference herein to any specific com­
mercial product, process, or service by trade name, trademark, 
manufacturer, or otherwise, does not necessarily constitute or 
imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof. The views and 
opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency 
thereof. 

Printed in the United States of America 
Available from 

National Technical Information Service 
U. S. Department of Commerce 
5285 Port Royal Road 
Springfield, VA 22161 

NTIS price codes 
Printed copy: A08 
Microfiche copy: AOl 



Distribution 
Categories: 

UC-32,-90 

ARGONNE NATIONAL LABORATORY 
9700 South Cass Avenue, Argonne, Illinois 60439 

ANL/FE-85-4 

THE SYSTEMS ANALYSIS LANGUAGE TRANSLATOR (SALT): 
PROGRAMMER'S GUIDE 

by 

Howard K. Geyer* and Gregory F. Berry 

Energy and Environmental Systems Division 

March 1985 

work sponsored by 

U.S. DEPARTMENT OF ENERGY 
Morgantown Energy Technology Center 

•Engineering Division. 





CONTENTS 

ABSTRACT 1 

1 INTRODUCTION 1 

2 STRUCTURE OF THE SALT CODE 3 

2.1 Salt Preprocessor 3 
2.2 Driver Code 4 
2.3 Model Structure 5 
2.4 System Models 6 
2.5 Properties Codes 7 

3 ADDITION OF NEW MODELS AND FLOW TYPES 10 

3.1 INTF File 10 
3.2 Addition of New Models 12 
3.3 Addition of New Flow Types 13 

4 NUMERICAL PROCEDURES 15 

4.1 Procedure for Using SOV 15 
4.2 Procedure for Using SOLVG 16 
4.3 Procedure for Using OPT 17 

APPENDIX A: Code Listing 19 

A.I Combustor Model 21 
A.2 Compressor Model 26 
A.3 Deaerator Model 29 
A.4 Gas-Diffuser Model 31 
A.5 Fuel-Dryer Model .* 33 
A.B Feedwater-Heater Model 35 
A.7 Flash-Tank Model 44 
A.8 Gas-Turbine Model 46 
A.9 Heater Model 50 
A. 10 Heat-Exchanger Model 52 
A . l l Flow-Initiator Model 59 
A.12 Fuel-FIow-Initiator Model 63 
A.13 Molten-Carbonate Fuel-Cell Model 64 
A.14 Liquid-Metal Diffuser Model 71 
A.15 Magnetohydrodynamic-Generator Model 73 
A. 16 Liquid-Metal Magnetohydrodynamic-Generator Model 80 
A.17 Liquid-Metal Nozzle Model 84 
A.18 Liquid-Metal Pipe Model 86 
A.19 Flow-Mixer Model 88 
A.20 Gas-Nozzle Model 91 
A.21 Phosphoric Acid Fuel-Cell Model 93 
A.22 Pump Model 99 
A.23 Pipe-Calculator Model 100 
A.24 Steam-Condenser Model 101 
A.25 Steam-Drum Model 103 



CONTENTS (Cont'd) 

A.26 Liquid-Gas Separator Model ^"^ 
A.27 Stack Model 11° 
A.28 Solid-Oxide Fuel-Cell Model 112 
A.29 Flow-Splitter Model H ^ 
A.30 Steam-Turbine Model 122 
A.31 System Model 127 
A.32 Two-Phase Diffuser Model 131 
A.33 Two-Phase Mixer Model 135 
A.34 Two-Phase Nozzle Model 137 
A.35 General Properties Code 141 

APPENDIX B: Job-Control Language for IBM System at ANL 145 



THE SYSTEMS ANALYSIS LANGUAGE TRANSLATOR (SALT): 
PROGRAMMER'S GUIDE 

by 

Howard K. Geyer and Gregory F. Berry 

ABSTRACT 

The Systems Analysis Language Translator (SALT), a systems-
analysis and process-simulation computer code for steady-state and 
dynamic systems, can also be used for optimization and sensitivity 
studies. The SALT code uses sophisticated numerical techniques, 
including a hybrid steepest-descent/quasi-Newtonian multidimensional 
nonlinear equation solver, sequential quadratic programming methods 
as optimizers, and multistep integration methods for both stiff and 
nonstiff systems or equations. Based on a preprocessor concept, the 
code uses precompiled component models, several flow types, and 
numerous thermodynamic and transport property routines. The SALT 
code has been used to study open-cycle and liquid-metal magneto-
hydrodynamic systems, fuel cells, ocean thermal energy conversion, 
municipal-solid-waste processing, fusion, breeder reactors, and 
geothermal and solar-energy systems. This programmer's guide 
briefly describes the code, defines parameters used with the 
component models, and presents detailed examples of declaration 
structures to be used with these models. 

1 INTRODUCTION 

The objective of the Systems Analysis Language Translator (SALT) programmer's 
guide is to describe in detail how the SALT code works, what is being calculated, and 
what a programmer needs to consider to add or modify component models, property 
routines, or solution procedures. Using this guide, a programmer should be able to add to 
or modify the computer coding to customize the routines for particular applications. The 
SALT code can be used to solve almost any systems-analysis problem ~ possible 
applications include pure economics, electrical circuits, transportation, or even weapon 
deployment. (Some of these applications have actually been implemented, but they are 
not discussed here because they are not supported by the U.S. Department of Energy.) It 
is through an appreciation of this flexibility that the user can assess the value of SALT 
for a given application. 

The SALT code is based on a preprocessor concept, wherein a "new" system 
driver can be written for each application. The generation and compilation of this 
system driver requires extremely small amounts of computer t ime, so it is not usually 
worthwhile to save the system driver for further applications on the same system. This 
efficiency in creating a system driver may be at tr ibuted to the fact that most of the 



algorithms used for calculations are contained in a load module. Thus, all of the models, 
property routines, and solution procedures have been precompiled. Duplication of models 
(e.g., use of several mixers) presents no difficulty, because each model uses exactly the 
same algorithms and logic. The different data requirements for each model are 
distinguished by means of unique labels. This approach is consistent with the overall 
concept of creating an efficient and compact systems code. 

Chapter 2 of this report describes the structural requirements for modifying or 
adding models or property routines to SALT. Understanding the structure is essential if 
the new models or property routines developed are to be consistent with existing models 
and property routines. This chapter also indicates what the developers consider to be 
mandatory requirements. The outputs of the model or property routines must be single-
valued, returning unique and repeatable values for identical input flow-stream values and 
identical parameter values. Consistent property values should be contained in each 
output flow stream to ensure that this flow stream is consistent when it is put into a 
subsequent model. The account in Chapter 2 contains all the necessary structural 
information required to add to or modify any part of the models. 

Chapter 3 provides the detailed information that must be known in order to add 
new models and new flow types. Probably most modifications to SALT will involve the 
addition of new models; therefore, a separate section is included to describe this 
procedure. Because of budget limitations, a section on adding new property routines and 
solution procedures has not been included. (Interested users may contact the authors if 
these modifications are required.) Work is in progress to develop additional models and 
new property routines (especially designed for the solution of chemistry problems). 

Chapter 4 briefly describes the calling sequences to the solution procedures SOV, 
SOLVG, and OPT, furnished with SALT. The theoretical basis for these procedures is not 
part of the SALT documentation and is beyond the scope of either the user's guide* or 
the programmer's guide. This omission is consistent with our policy of not presenting the 
theoretical basis for the algorithms used in the models and property routines. 

The integrated solution procedure also is not presented. This procedure is used 
predominantly with the dynamic models, which are not covered in detail in this 
documentation (again due to budget limitations). The integrated solution procedure also 
is used with the distributive-parameter models. However, these models are few; most of 
the models are lumped-parameter models. 

Appendix A contains actual program listings (with comments) of some of the 
more frequently used models at Argonne National Laboratory (ANL). Appendix B gives 
the job-control-language procedure used. The property routines and solution procedures, 
less frequently used models, and dynamic models are not listed in this report. These 
routines are not thoroughly supported with comments, so their inclusion in the document 
was deemed inappropriate. These omitted listings are on the computer tape, which can 
be obtained directly from the National Energy Software Center, located at ANL. 

*Geyer, H.K., and G.F. Berry, The Systems Analysis Language Translator (SALT): User's 
Guide, Argonne National Laboratory Report ANL/FE-85-03 (March 1985). 



2 STRUCTURE OF THE SALT CODE 

2.1 SALT PREPROCESSOR 

Basically, SALT makes use of a preprocessor technique; the code reads the 
STRUCT file, consisting of the system problem under consideration, and then generates a 
driver code that will solve that problem. The driver code, written in PL/I, is then 
compiled and run in order to perform the system analysis. 

In generating the driver code, the SALT code parses the input STRUCT file to 
determine which models are being called and what iterative tasks have been defined. In 
order to establish an interface with the models, the SALT code also reads the interface 
file (INTF) to obtain all the variables that pertain to the models being used. The 
STRUCT file and INTF file are the only two input files that the SALT preprocessor re­
quires. The output driver code is generated on the file SYSDRV. Any messages, together 
with a reflection of the input STRUCT file, are printed out on the SYSPRINT file. 

The details of parsing by the SALT code are not explained here; however, the 
requirements that the SALT code places on certain variable names are considered, 
because such variables may be generated by the model developer. The SALT code is a 
very general code; it handles arbitrary data structures representing the variables of the 
flows and models, arbitrary model calls representing the processing of such data 
structures, and the logic and calls to certain mathematical procedures. Very few 
specific requirements are imposed on these data structures and model calls by the SALT 
code. However, because SALT must work with these data structures and model calls, it 
must be able to manipulate their names. 

The flows and model data are represented by PL/I aggregate variables; these 
variables may be of arbitrary structure, with one exception: the first second-level 
variable must be the variable "NAME," declared with the attributes "CHAR(16)." The 
existence of such an element of the data structure is an assumption built into the SALT 
code, which will use that particular variable to store the name of the flow or model as it 
is used within the STRUCT file. These names should not be inadvertently redefined 
within the model, because output from the system run could be adversely affected. 

The SALT code itself places no further restrictions on the structuring of the 
flows and model data structures. (The naming of some of the models' substructures is 
restricted in the manner described below.) Almost any type and amount of data can be 
associated with the flows and models used by SALT. 

The model calls representing the processing of the flows and model data have 
three requirements imposed by SALT; 

1. Each model must have associated with it a data structure that is 
always the first argument to the model call (techically, a pointer 
to the data structure is passed). 



2. The name of the model call must be the same as the name of the 
data s tructure, followed by one or more characters representing 
the type of entry to the model. As an example, for the heat-
exchanger model (HX) there exists a PL/I data structure denoted 
HX (i.e., the one-level name is HX) and a procedure with multiple 
entries HXC, HXH, and HXOUT, each of which has as its first 
argument a pointer to the HX data structure. SALT actually takes 
the name of this pointer to be the model name as used within the 
STRUCT file. Thus, if the HX model had been called HX 1, then 
H X l would be declared as a pointer to the HX data s tructure 
containing the data for the H X l heat exchanger. Technically, 
since the name of a PL/I external procedure must have seven 
characters or fewer, this imposes a length restriction on the 
model-type name. However, this restriction is imposed by the PL/I 
compiler, not by SALT. 

3. All other arguments to any model entry represent pointers to the 
flows required by that model. As in the case of the model 
pointers, SALT takes the names of these pointers to be the names 
of the flows used within the STRUCT file. 

2.2 DRIVER CODE 

The driver code is the output, on the file SYSDRV, from the SALT code 
preprocessor. This code is all that is constructed by SALT, and its s tructure is relatively 
simple. The SALT code does not construct any component models or properties 
procedures, so this driver code usually is not very large. (The largest part is usually a 
reflection of part of the INTF file.) 

The driver code can be divided into five sections. The first section consists of 
those parts of the INTF file that represent models and flows pertaining to the system 
under consideration. For each model or flow type used in the system, the appropriate 
model or flow interface is copied from the INTF file to the driver coding. Statements 
that allocate storage and pointers to this storage for each model and flow data structure 
used by the system follow. 

The second section of the driver code pertains to the construction of the linked 
lists used by the system models. This construction process consists of a series of calls to 
an internal procedure to allocate a new link for each model substructure used by the 
system models. More information on this list structure will be given below. 

The third section of the driver code is basically the initialization of model 
variables or other variables from the DATA input statement. This is the last s ta tement 
in the SALT input, but it comes before most of the other executable s ta tements in the 
driver code. 

The fourth section represents the model calls and iterative loops defined by the 
SALT code input on the file STRUCT. For each model specified, a call is made to the 



appropriate model with the appropriate flow arguments. For iterative loops (i.e., 
SYSBEG/SYSEND loops), the driver code is expanded into a PL/I DO loop. Before the DO 
statement, all flows used in the loop that were also used before this loop are saved. The 
saved flow variables are used to reinitialize the flows after the DO statement. Depend­
ing on the type of task being performed within the loop ~ VARY/CONS, SWEEP, MINI, 
etc. — certain variables needed by the equation solver or optimizer may be declared and 
initialized before the DO statement. 

At the end of the iterative loop, again depending on the task, the user-imposed 
constraints and objective function will be evaluated and a call made to the equation 
solver or optimizer. 

The fifth section of the driver code consists of some PRINT statements to 
produce a summary of the iterations completed by the iterative tasks. 

2.3 MODEL STRUCTURE 

The models that are cEdled by SALT can be composed of any type of PL/I coding, 
representing practically any level of modeling sophistication. The few requirements on 
the models needed to establish an interface with SALT have already been indicated. (The 
arguments to any model entry must be pointers to the model data structure [PL/I 
aggregate variable] and then to any flow data structures. Also, the model entries must 
be denoted by a common model-type name, followed by additional characters represent­
ing the particular model entry.) 

The model developer dictates the order of the flow arguments, which should be 
such as to facilitate their use in the SALT input. Pass-through flows should precede 
input flows, which in turn should precede output flows. 

Being written in PL/I, the models can nreke full use of any of the PL/I 
programming constructs — IF - THEN - ELSE statements, DO WHILE statements, array 
assignments, etc. To some extent, the use of PL/I eliminates the need for a model 
simulation language. The models may also call FORTRAN subroutines to perform the 
modeling calculations. 

In terms of the actual modeling, no restrictions are made. However, it is 
important to make sure that the model is a true function of only the input flows and 
model parameters; there should be no hidden variables that may take different values 
each time the model is called. Thus, if a model is called twice with exactly the same 
inputs, it should return exactly the same outputs. This requirement is imposed so that 
the SALT code can employ mathematical procedures that may be used to calculate 
gradients of model outputs using the method of finite differences. 

Most models have certain common features, although these are not strictly 
necessary for their use within the SALT code. First, most of the models save the flows 
of a model within the model's data structure. These flows can then be used within 
constraints or objective functions. Also, the system models can gain access to these 
flows and print them out along with the other flows. Models that put in, lose, consume, 



or produce power (other than tlirough energy transfers between flows) have a POWER 
substructure within the model's data structure to save these power changes. These 
POWER substructures are referenced by the system model to calculate the net power 
produced, as well as the system efficiency. Most models have a PARM substructure 
containing the parameters pertaining to a particular model. Finally, most models have 
an output entry, which is used to print out the values saved within the PARM 
substructure. 

Appendix A presents the actual coding representing the individual models (with 
comments included). Most of this coding is easily understandable. However, because 
many of the models' calculations depend on property calculations. Sec. 2.5 discusses the 
calling sequences to the properties codes. 

2.4 SYSTEM MODELS 

Although system models are in all respects similar to the other component 
models, the former may also make use of a linked list of variables representing 
information contained in other models. Thus, system models may be used to sum up 
component powers or print out all of the system flow variables. This linkage mechanism 
is discussed here to help modelers develop new system models as the need arises. 

The linked list used to locate the various model substructures is developed by 
SALT using information in the INTF file. This file (discussed in Chapter 3) has several 
types of s tatements , one of which — denoted as type 0 ~ Informs the SALT code that a 
linked list is required. The type-0 s tatement has the name of a model substructure and 
the name of a pointer to the head of the linked list of that substructure type. 

To develop an actual linkage structure, one generates a sequence of PL/I 
structure variables of the following form; 

1 LINK BASED, 

2 MP POINTER, 

2 LP POINTER, 

2 NP POINTER; 

where MP points to the beginning of the model structure containing the particular 
substructure for which the linked list is being developed, LP points to the particular 
substructure, and NP points to the next LINK structure. The first LINK structure is 
pointed to by the pointer named in the type-0 statement in the INTF file. The last LINK 
structure has NP set to the NULL pointer. 

As different substructure types are specified in the type-0 interface s ta tements , 
different linked lists are generated, starting at their corresponding head pointers. Thus, 
the LINK.LP pointer will point to different structure types. The LINK.MP pointer is 
included so that the name of the model that the corresponding LINK.LP is accessing can 
also be obtained. 



Sometimes it is necessary to have linked lists pointing to structures that have no 
common name. For example, the saved flow structures are saved within the models as 
FLCl, FLC2, FLH, etc. These names were chosen to facilitate the system model. If one 
specifies FL*, the SALT code will generate a linked list consisting of all the substructure 
names starting with FL and followed by the name of the model entry label and any 
additional characters. The use of the added entry label permits SALT to generate the 
linked list in the order that the model entries are used. Otherwise, the same LINK 
structure is used as before. Several LINKs may be allocated for each model, depending 
on the number of substructures within the model that must be linked. 

2.5 PROPERTIES CODES 

The thermodynamic properties codes constitute one of the most important parts 
of the system code. Many of the models actually reduce to simply calling the properties 
codes one or more times with different inputs. Thus, it is important to understand what 
these codes are doing in order to understand the models. At present, numerous 
properties codes are in existence, but most of these are accessed through a common 
calling program (GP). 

The GP code actually has three entries — GPIN, GP, and GPSAT. The GPIN 
entry is usually called within the SALT input (and thus requires a model label, such as 
GP_1:IN) and is used to initialize the gas properties code. The GP entry, which is usually 
called by the models, performs the property calculations. Also called by the models, 
GPSAT performs calculations of the saturation properties. 

The calling sequence to GP consists of three arguments — LABEL, declared as a 
CHAR(16) variable; FLOW, declared the same as the GAS structure; and SW, declared as 
a FIXED BIN(15) variable. The LABEL argument, which contains the name of the model 
calling the properties code, is used to obtain printouts during debugging runs. The FLOW 
argument represents the particular flow for which the properties are being calculated. 
The SW argument is a switch that takes the values 1, 2, or 3, telling GP which variables 
within FLOW are to be treated as inputs. When SW is equal to 1, the variables 
FLOW.PROP.TEMP (representing the flow's temperature) and FLOW.PROP.PRES (repre­
senting the pressure) are inputs. When SW is equal to 2, FLOW.PROP.ENTH (represent­
ing the flow's specific enthalpy) and FLOW.PROP.PRES are the inputs. When SW is 3, 
FLOW.PROP.ENTP (representing the flow's entropy) and FLOW.PROP.PRES are the 
inputs. The other thermodynamic variables of the flow are calculated as functions of 
these inputs. Thus, calling GP with SW equal to 2 will obtain FLOW.TEMP, FLOW.RHO, 
FLOW.ENTP, and FLOW.QUAL as outputs. 

The calling sequence to GPSAT consists of LABEL and FLOW (as in GP) and 
three other FL0AT(16) variables. The first of these variables is the critical pressure for 
the flow, and the other two are the saturation liquid and vapor enthalpy values as 
functions of the flow's pressure. 

The actual fluid code used when GP or GPSAT is called is determined by the 
value of the flow's ID parameter. At present, ID can be either H20, GAS, LIQ, JAN, or 
THR. When ID is H20, the water/steam properties code is called. When ID is GAS, a 



simple 23-species chemical equilibrium code is called. When ID is either LIQ, JAN, or 
THR, the specific fluid name must follow these ID designators. These fluids must be 
among those in the files LIQDATA, JANDATA, or THRDATA, for the corresponding ID 
type. 

The gas properties code can handle a variety of different gases. At present, 
information about the gas type is carried along with the flow variables in the 
substructures ATOM and COMP. The substructure COMP contains the molar fractions of 
the 23 species, while ATOM is an array representing the kilogram-atoms per kilogram of 
flow of the eight elements that make up these 23 species. The gas properties procedures 
also include GASBW and GASNM, which are sometimes called directly by the models (but 
only when the flow's ID is GAS). The first of these, GASBW, wiU return the ATOM array, 
given the GAS.COMP substructure; the second, GASNM, returns the total number of 
moles per kilogram of gas flow, given the GAS.COMP substructure. The gas properties 
codes make use of the ATOM array, which should be specified before the gas properties 
code is called. Those models that adjust the molar fractions of a gas flow (e.g, mixers, 
combustors, and fuel cells) should call GASBW with the new GAS.COMP to obtain 
GAS.ATOM before any calls are made to GP. 

The gas properties codes offer another feature that is sometimes useful in 
systems modeling — the ability to do frozen chemistry calculations. When the externally 
declared variable GASFRZ is set to 0 or 1, the equilibrium calculations are turned on or 
off. Using this feature, processes that are not at chemical equilibrium can be handled, at 
least approximately. (Changes in the molar fractions of the gas as the temperature and 
pressure are changed must be handled within the models or by some other means when 
GASFRZ is set to 1.) The calculation of the thermodynamic properties proceeds as 
before, based on the specified species molar fractions. The GASFRZ variable may be 
turned on and off selectively (using the PLI statement within the SALT input) at various 
places within the system analysis. 

The GP code has an externally declared variable (GPPRT) that can be set to 0 or 
1 to print out the values of the model name, flow name, temperature, pressure, enthalpy, 
entropy, mass flow rate , and SW after every property call. The GPPRT variable is often 
useful for debugging a new system configuration. Another externally declared variable 
(GASPRT) will provide a similar service for just the gas properties codes. In this case, 
GASPRT can also be set to 2 in order to obtain the actual iterations performed in the 
equilibrium calculations. This setting should be used with discretion; it can produce quite 
a lot of output. 

The overall organization of the properties codes is as follows. For each ID type 
(H20, THR, etc.), several procedures are available; the name of each procedure begins 
with the ID characters (for ID = H20, STM is used as an alias), followed by IN, TP, HP, 
SP, SAT, or WK. Thus, for the ID type THR, the procedures THRIN, THRTP, THRHP, 
THRSP, THRSAT, and THRWK can be found. The IN procedure is used to obtain the data 
from the THRDATA file; the TP, HP, and SP procedures are used to perform the 
calculations for the three different values of the SW parameter; SAT is used when 
GPSAT is called; and the WK procedure Is a general work procedure that is called by the 
other entries. Not all of the different ID types include all the different entries. For 
example, LIQIN and LIQWK are the only entries available when ID is equal to LIQ; in this 



case, the SW value is passed directly to LIQWK to perform the functions of the other 
entries. Also, some of the properties codes do not have saturation properties, because 
they model only a single fluid phase; this limitation applies to the JAN, LIQ, and GAS 
properties codes. 



10 

3 ADDITION OF NEW MODELS AND FLOW TYPES 

3.1 INTF FILE 

The SALT code has been designed so that new models can be added with as litt le 
effort as possible, while retaining the ability to handle models with arbitrary levels of 
complexity. The key to maintaining the flexibility required to handle arbitrary models is 
the mechanism by which the constructed driver establishes its interface with the 
component models. Numerous approaches have been employed in this problem, but the 
one ultimately used is relatively simple and has proven to be one of the most flexible 
solutions. The technique is simply to read in from an external file those variables that 
must be declared for each component model used in a given system analysis. These 
variables may be the names of model parameters that are passed to the component 
models, the names of entry variables, or the names of other variables that need only be 
included when a particular model is used. 

The file that contains the interface information, called INTF, is used by the 
SALT code when constructing the PL/I driver for the problem under consideration. The 
form of the interface consists of a series of header s tatements, each with a 0, 1, 2, or 3 
in column one, followed by other data (depending on the number). The type-0 s ta tements 
are used to read in information that wiU be needed by the system models in locating 
specific substructures of the models; the type-1 statements define the model interfaces; 
the type-2 statements define the flow interfaces; and the type-3 s ta tements define 
additional coding that will be unconditionally inserted into the PL/I driver. 

The specific form of the type-0 statement is as follows: 

OSUBSTRUCTURE_NAME SUBSTRUCTURE_HEAD_PTR 

Here, SUBSTRUCTURE_NAME is the name of the model substructure that wiU be 
included within a linked list for use in system models, and SUBSTRUCTURE HEAD PTR 
is a pointer variable that points to the beginning of this linked list. 

Some of the substructures to be included in a linked list have variable names — 
such as FLC, FLH, FLCl, e tc . - so the character "*" may be used at the end of a 
SUBSTRUCTURENAME to refer to all substructures that begin with the specified 
SUBSTRUCTURENAME. All substructures that begin with those common characters 
will then be included in the same linked list. To create a linked list for all of the flow 
substructures starting with the characters "FL," for instance, one would write the 
following; 

CFL* FLOW_HEAD_PTR 

The type-1 statement header takes the form of a 1 in column one, followed by 
the name of the model. Statements following this header statement represent the PL/I 
declarations of the model structure variable, foUowed by the declaration of the model 
entry points, each on a separate line. For example, the interface s ta tements for the ST 
model are as follows: 



11 

1ST 
DCL 
1 ST BASED, 

2 NAME CHAR(16), 
2 FLCl, 
3 FNAME CHAR(16), 
3 ID CHAR(4), 
3 AT0M(8) FL0AT(16), 
3 PROP, 
4 (TEMP,PRES,ENTH,ENTP,QUAL,RHO,VEL,MASS) FL0AT(16), 

3 COMP, 
4 (XAR,XCH4,XC0,XCO2,XH,XH2,XH20,XH2S,XK,XK0H,XNO,XN2, 
XO,XOH,X02,XS02,XHCL,XCH30H,XC,XCOS,XNH3,XS,XCL) FL0AT(16), 

3 SOL, 
4 WTF FL0AT(16), 

2 FLC2, 
3 FNAME CHAR(16), 
3 ID CHAR(4), 
3 AT0M(8) FL0AT(16), 
3 PROP, 
4 (TEMP,PRES,ENTH,ENTP,QUAL,RHO,VEL,MASS) FL0AT(16), 

3 COMP, 
4 (XAR,XCH4,XCO,XC02,XH,XH2,XH20,XH2S,XK,XKOH,XNO,XN2, 
X0,X0H,XO2,XSO2,XHCL,XCH3OH,XC,XC0S,XNH3,XS,XCL) FL0AT(16), 

3 SOL, 
4 WTF FLOATde), 

2 PARM, 
3 DDNAME CHAR(7), 
3 MODE CHAR(15), 
3 EXIT_PRES FLOATde), 
3 EFFICIENCY FL0AT(16), 
3 MECH_EFF FL0AT(16), 
3 SR FL0AT(16), , 
3 EXT_MASS FLOATde), 
3 FLOW_FACT FL0ATd6), 
3 EXHAUST_LOSS FL0ATd6), 
3 DM FLOATde), 
3 WV FLOATde), 
3 WHEEL_SPEED FL0AT(16), 
3 CONS FLOATde), 
3 VOL_FLOW_RATE FLOATde), 
3 PRINT FIXED BIN(15), 

2 POWER, 
3 (INPUT,PRODUCED,CONSUMED,LOSS) FLOATde), 

2 E_LOSS, 
3 PTR POINTER, 

2 COST FLOATde); 
DCL STC ENTRY; 
DCL STOUT ENTRY; 

Other variables may be declared within the interface for each model, but no 
particular variable should be declared in more than one model interface. If other 
variables are declared, they should follow the declaration of the model structure 
variable. 



12 

Although the statements following the header are simply PL/I declarations, the 
SALT code performs some checking of this input in order to retain the names of the 2-
level substructures and the entry names. In the case of the model declarations, some 
programmers use the "style" of writing the comma before the next line rather than at the 
end of the line. The SALT code checks for the presence of the string "2" in locating the 
2-level substructures, but it will not properly locate those preceded by ",2." 

Usually, no executable statements appear within the interface. However, it is 
possible to include whole PL/I procedures. Such procedures are simply compiled right 
into the PL/I driver code along with the other statements in the interface. Only 
statements belonging to the interfaces of models actually used in the system problem 
will be brought into the driver code. 

The type-2 statement header takes the form of a 2 in column one, followed by 
the name of a flow type. Statements following this header declare the form of the 
flow. For example, the interface statements for the STM flow are as follows: 

2STM 
DCL 1 STM BASED, 

2 NAME CHARde), 
2 ID CHAR(4), 
2 AT0M(8) FLOATde), 
2 PROP, 
3 (TEMP,PRES,ENTH,ENTP,QUAL,RHO,VEL,MASS) FLOATde), 

2 COMP, 
3 (XAR,XCH4,XCO,XC02,XH,XH2,XH20,XH2S,XK,XKOH,XNO,XN2, 
XO,XOH,X02,XS02,XHCL,XCH30H,XC,XCOS,XNH3,XS,XCL) FLOATde), 

2 SOL, 
3 WTF FLOATde); 

As was the case for the model interfaces, only those flow-type interfaces that are 
actually used in the system problem will be included in the driver code. 

The type-3 statement header takes the form of a 3 in column one, followed by 
any comments or by blanks. The lines following this header statement, up to the 
occurrence of another header line, will be included in the driver code. For example, 
declarations of unit-conversion variables might be included. 

The different types of interfaces may be freely mixed, but for readability it is 
useful to group all of the different types together. The INTF file may also reside in more 
than one data set and be concatenated together at run time. 

3.2 ADDITION OF NEW MODELS 

New PL/I component models may be added to the library of SALT models at any 
time. To do this, one need only take into account a few rules necessary for the SALT 
code to interface correctly with the model and add the appropriate interface statements 
to the INTF file. 



13 

The basic rules to be observed in developing a new model are as follows. First, a 
model may have any number of entry points, but the first several characters of the entry 
name should be the name of the model as it appears in a PROCESS statement. 
Additional letters (up to the PL/I limit of seven characters for entry names) may be used 
to define the separate entry points. Thus, the heat-exchanger model (HX) has the entry 
points HXH, HXC, and HXOUT. (When a model is referred to within a PROCESS 
statement without using the colon and entry name, the "C" entry — as in HXC ~ will be 
called. The main calculational entry should be specified as this "C" entry when 
developing new models.) 

The second basic rule concerns the arguments that are passed to these entry 
points. The first argument to all entry points is a pointer to the model structure 
variable. Any additional arguments that follow are pointers to the flow variables, which 
should be arranged in the order of pass-through flows, input flows, and output flows to 
the model. For the "OUT" entry (e.g., STOUT), the only argument should be the model 
structure variable. 

The third rule concerns the model structure variables. The 1-level name should 
be the name of the model. The first 2-level name should be NAME, declared as a 
CHAR(16) variable. This variable is always defined by the SALT code as being the name 
of the model (including user-defined label) as it is called within the system problem. 

Other 2-level structures may be defined by the model developer to store various 
input and output data from the model. The 2-level name POWER already has a special 
structure; if POWER is used, this structure should correspond to that used by the existing 
models. 

Beyond these basic rules concerning the naming of the entry points, the 
arrangement of the arguments, and the naming of the model substructure variables, any 
type of PL/I coding may be used in the model. A model may even call FORTRAN 
subroutines to perform its calculations. It is important, however, that the output from a 
model be a function only of the input flows and model parameters. Each time a model is 
called with the same input values, it should return the same output values. 

Once a model has been developed and debugged, it is compiled into the model 
load library, and the interface statements are added to the INTF file. Usually, the 
interface file will consist of the model structure variable and the declaration of the 
entry points. The model structure will already have been written, so it needs only to be 
copied from the model into the interface file (with the possible addition of initial 
attributes to define default input values). These additions to the INTF file should take 
only a few minutes of editing time. 

3.3 ADDITION OF NEW FLOW TYPES 

New flow types (where "flow types" refers to the structure of the flow variables) 
to be processed by newly developed models may be added to the SALT code at any time. 
Additional steam, liquid, or gas flows that are structurally the same as STM, LIQ, or GAS 
are generated as needed within a system problem, using the labeling option for flows 



14 

(i.e., STMl, STM 2, etc). At present, the STM, GAS, and LIQ flows are technically of 
the same type; they have been defined as separate flow types to furnish the user of SALT 
with some variety in the flow names available for use. 

The addition of a new flow type is accomplished by adding the PL/I declaration 
of the flow variables to the INTF file. Of course, this new flow will not be usable unless 
new component models have been written to accommodate this new flow type. If system 
models exist that print out flows, these models may have to be modified to accept the 
new flow types. Nothing else needs to be done to add a new flow type. 

As was the case for the model structures, each flow variable should have as its 
first 2-level element the variable NAME, declared as a CHAR(16) variable. This variable 
will be assigned the name of the flow as it is used in the system problem by the SALT 
code. 



15 

4 NUMERICAL PROCEDURES 

This chapter discusses the main mathematical procedures used by SALT in terms 
of their use and calling arguments. Three basic procedures are used in performing a 
steady-state system analysis: SOV, a one-dimensional equation solver; SOLVG, a 
multidimensional equation solver; and OPT, a multidimensional optimizer. 

4.1 PROCEDURE FOR USING SOV 

The SOV procedure is used quite often, both in the models and in the properties 
procedures. However, it is never used by the driver code as constructed by SALT. 
Within the driver code, even one-dimensional problems are solved using SOLVG. The SOV 
procedure a t tempts to solve an equation using a secant method, but some safeguards are 
employed when a root of the equation has been bracketed. 

Like all the numerical procedures employed by SALT, SOV makes use of an 
inverse calling sequence in which the i terative loop is not within the numerical procedure 
but within the calling program. This arrangement permits the numerical procedures to 
be called at any time to solve a new problem, even when the iterations of the previous 
problem are not finished (i.e., nested problems can be solved without resorting to 
recursive procedures). The coding necessary to solve a problem is simpler, because 
additional procedures that would define equation residuals are not needed. 

The arguments to the SOV procedure are as follows: 

X — Independent variable of the problem. 

F ~ Equation residual a t X. ^ 

I — Iteration counter, which should be incremented by 1 for each 
iteration (starting at 1). 

DEL — Initial perturbation in the X variable. 

ACC — Termination criterion; whenever ABS(F) < ACC, I is set to 
1000. 

MAXI — Maximum number of iterations permitted. 

SOVPRT — Print switch used to produce printed output of the 
iterations (if set to 1), or to produce no output except on failure to 
converge (if set to 0). 

LABEL — Character string used in the printout to delimit which call to 
SOV is being printed. 



16 

With these calling arguments, which are all inputs, the coding necessary to solve f(X) = 
0.0 is as follows: 

DO 1=1 TO MAXI; 
F=f(X); 
CALL SOV(X,F,I,DEL,ACC,MAXI,SOVPRT,LABEL); 

END; 

Here, it is assumed that each variable (except F) has been given a value before entering 
the loop. Since I is set to 1000 on convergence, MAXI must always be less than 1000. At 
each iteration, X is given a new value on exit from SOV, until the termination or 
maximum number of iterations is reached. 

4.2 PROCEDURE FOR USING SOLVG 

The SOLVG procedure is a multidimensional nonlinear equation solver that uses a 
hybrid quasi-Newtonian-update/steepest-descent technique. Like SOV, the procedure 
uses the inverse calling mechanism. Unlike SOV, however, SOLVG at tempts to find a 
root to the equations within some specified lower and upper bounds on X. 

The arguments to SOLVG are as follows: 

X — Array of independent variables of the problem. 

FSQ ~ Sum of the squares of the equation residuals. 

F ~ Array of equation residuals. 

N — Problem dimension. 

BL — Array of lower bounds on X. 

BU ~ Array of upper bounds on X. 

I — Iteration counter, used as with SOV. 

DEL — Parameter used to calculate the initial perturbations in the X-
array elements for calculating the Jacobian of the system of equations. 

ACC — Termination criterion; when FSQ < ACC, I is set to 1000. 

MAXI — Maximum iterations permitted. 

SOLVGPRT — Print switch, used to print out details of the i terations. 
When SOLVGPRT is zero, no output is obtained; when SOLVGPRT is 2, 
the maximum output is obtained. 

LABEL — Character string used to delimit printout. 



17 

All of these variables (except FSQ) are inputs and should be assigned vEilues before 
SOLVG is called. The coding necessary to solve the system of equations, fl(X) = 0.0, 
f2(X) = 0.0,..., fn(X) = 0.0, would be as follows: 

DO 1=1 TO MAXI; 
F d ) = f l ( X ) ; 
F(2)=f2(X); 

F(N)=fn(X); 
CALL SOLVG(X,FSQ,F,N,BL,BU,I,ACC,DEL,MAXI,SOLVGPRT,LABEL); 

END; 

4.3 PROCEDURE FOR USING OPT 

OPT solves a nonlinearly constrained, nonlinear optimization problem of the 
following form: 

MIN F(X) 
over a l l X(i) i= l TO N such t h a t 
BL(i)<X(i)<BU(i) , 1=1 TO N 
Ci(X)=0.0, i=l TO MEQ 
Ci(X)>0.0, i=MEQ+l TO M 

OPT uses a sequential quadratic programming procedure with a BFGS (Broyden, Fletcher, 
Goldfarb, and Shanno) update to develop the Hessian of the Lagrangian function of the 
problem. 

The calling sequence to OPT includes the follovjing arguments: 

X — Array of independent variables of the problem. 

F — Objective function to be minimized. 

C — Array of constraints. 

MEQ — Number of constraints that are equalities. 

BL — Array of lower bounds on X. 

BU — Array of upper bounds on X. 

I — Iteration counter. 

ACC — Termination criterion; when the first Kuhn-Tucker condition is 
satisfied to within ACC, I is set to 1000. 



18 

DEL — Parameter used to define the perturbations in X for calculating 
gradients. 

MAXI — Maximum iterations permitted. 

OPTPRT — Print switch for producing output — 0 for no output, 4 for 
maximum output. 

LABEL — Character-string delimiter for the printout. 

All of these arguments are inputs and should be assigned values before OPT is called. 
The coding necessary to solve the nonlinearly constrained optimization problem then 
becomes: 

DO 1=1 TO MAXI; 
F= f(X); 
cd)=ci(x); 
C(2)=C2(X); 

C(M)=CM(X); 
CALL OPT(X,F,C,MEQ,BL,BU,I,ACC,DEL,MAXI,OPTPRT,LABEL); 

END; . 



19 

APPENDIX A: CODE LISTING 



20 



21 

APPENDIX A: CODE LISTING 

A.1 COMBUSTOR MODEL 

A. 1.1 Description of Model 

The CB model, representing a generic combustor, requires three flows; the first 
two are inputs, and the third is an output. The first flow represents the fuel input and is 
of the generic type FUEL. The second flow represents any oxidizing flow, while the third 
represents the combustion-gas output; these latter two flows are of the generic type 
GAS. The CB model, as a generic combustor, can also model a gasifier, where the output 
gas-flow conditions are at chemical equilibrium. Options are also provided for ash 
removal and potassium injection (used for magnetohydrodynamic systems). 

The parameters of the CB model are as follows: 

HEATLOSSFRAC — Specified fraction of the thermal input (based on 
the higher heating value of the fuel) lost from the combustor due to 
heat loss. 

FUEL M — Calculated value of the fuel mass after any ash removal. 

FUELHHV — Corrected higher heating value of the fuel after any ash 
removal. 

ASH M — Calculated amount of mass removed from the fuel as ash. 

ASH M FUEL — Calculated amount of mass left in the fuel as ash. 

ASHDET — Specified weight fraction of the ash within the fuel after 
any ash rejection. 

FUEL HEAT FORM — Heat of formation of the fuel at a pressure of 1 
atm and a temperature of 298.16 K. 

H20 M FUEL - Calculated amount of HjO left in the fueL 

SLURRYCONC — Calculated weight fraction of solid fuel to total 
weight of fuel (useful when CB is modeling a gasifier). 

CARBON BURNOUT — Specified fraction of the carbon in the fuel that 
is actually combusted; the rest of the carbon is carried over with any 
ash carry-over. 

K MASS — Calculated weight of potassium in the output gas flow. 



22 

KFRAC — Specified weight fraction of potassium in the output gas 
flow (used to model potassium seed injection in MHD systems). 

OX_M — Calculated mass of oxygen needed for stoichiometric 
combustion of the fuel. 

STOICH — Calculated fraction of the mass of total oxygen in oxidizer 
flow to the mass, OX M. 

PRES DROPFRAC — Specified fraction of the input oxidizer pressure 
representing the pressure drop ttirough the combustor. 

BC(8), B0(8), and BG(8) — Calculated elemental mass fractions for the 
fuel, oxidizer, and output gas flows, respectively. 

A.1.2 Declaration Structure 

* PROCESS NAME('CBC'); 
CBC: PROC(CB_P, FUEL_P, AIR_P, GAS_P); 

DCL (CB_P, FUEL_P, AIR_P, GAS_P) POINTER; 
DCL I CB BASED(CB_P), 

2 NAME CHARde), 
2 FLCl, 
3 FNAME CHARde), 
3 ID CHARde) VARYING, 
3 AT0M(8) FLOATde), 
3 PROP, 
4 (TEMP,PRES,ENTH,ENTP,QUAL,RHO,VEL,MASS) FL0AT(16), 

3 COMP, 
4 (XAR,XCH4,XCO,XC02,XH,XH2,XH20,XH2S,XK,XKOH,XNO,XN2, 
XO,XOH,X02,XS02,XHCL,XCH30H,XC,XCOS,XNH3,XS,XCL) FLOATde), 

3 SOL, 
4 WTF FLOATde), 

2 FLC2, 
3 FNAME CHARde), 
3 ID CHARde) VARYING, 
3 AT0M(8) FLOATde), 
3 PROP, 

4 (TEMP,PRES,ENTH,ENTP,QUAL,RHO,VEL,MASS) FL0AT(16), 
3 COMP, 

4 (XAR,XCH4,XCO,XC02,XH,XH2,XH20,XH2S,XK,XKOH,XNO,XN2, 
XO,XOH,X02,XS02,XHCL,XCH30H,XC,XCOS,XNH3,XS,XCL) FLOATde), 

3 SOL, 
4 WTF FLOATde), 

2 PARM, 
3 HEAT_LOSS_FRAC FL0AT(16), 
3 FUEL_M FLOATde), 
3 FUEL_HHV FLOATde), 
3 FUEL_HEAT_FORM FLOATde), 



23 

3 ASH_M FLOATde) , 
3 ASH_M_FUEL FL0AT(16) , 
3 ASH_DET FLOATde) , 
3 H20_M_FUEL FL0AT(16) , 
3 SLURRY_CONC FLOATde) , 
3 CARBON_BURNOUT FLOATde) , 
3 K_MASS FLOATde) , 
3 OX_M FLOATde) , 
3 STOICH FLOATde) , 
3 PRES_DROP_FRAC FLOATde) , 
3 K_FRAC FLOATde) , 
3 BC(8) FLOAT(ie) , 
3 B0(8 ) FLOAT(ie) , 
3 BG(8) FLOAT(ie) , 

2 POWER, 

3 (INPUT,PRODUCED,CONSUMED,LOSS) FLOAT(ie) , 
2 COST FLOATde); 

DCL 1 FUEL BASED(FUEL_P), 
2 FNAME CHARde) , 
2 PROP, 

3 (TEMP,MASS,HHV) FLOATde) , 
2 WEIGHTS, 

3 (C ,H,0 ,N ,S ,CL,H20 ,ASH) FLOATde); 
DCL GAS BASED(GAS_P) LIKE FLC2; 
DCL AIR BASED(AIR_P) LIKE FLCl; 
DCL AW(8) FLOATde) I N I T ( 3 9 . 9 4 8 , 1 2 . 0 1 1 1 5 , 1 . 0 0 7 9 7 , 3 9 . 1 0 2 , 

1 4 . 0 0 6 7 , 1 5 . 9 9 9 4 , 3 2 . 0 6 4 , 3 5 . 4 5 3 ) ; 
DCL (GP,GASNM) ENTRY, 

(FRAC,NMOLE,TOT) FLOATde) , 
FL LIKE FUEL.WEIGHTS; 

Initialize power and set power loss to the environment. 

POWER=0.0; 

POWER.LOSS = HEAT_LOSS_FRAC*FUEL.MASS*FUEL.HHV; 

Set pressure drop through the combustor. 

AIR.PRES = AIR.PRES*d.0 - PRES_DROP_FRAC); 

Using the specified ASHDET, calculate the fuel's weight fractions and its higher heating 
value after any ash removal. 

FRAC=(1.0-ASH_DET)/(1.0-FL.ASH); 
FUEL_M=FUEL.MAS S/FRAC; 
FUEL_HHV=FRAC*FUEL. HHV; 
FL=FL*FRAC; 
FL.ASH=ASH_DET; 

Calculate the ash mass removed by the ash-removal process and the amount of ash and 
water remaining in the fuel. 



24 

ASH_M=FUEL.MASS-FUEL_M; 
ASH_M_FUEL=FL. ASH*FUEL_M; 
H20_M_FUEL=FL.H2O*FUEL_M; 

Calculate the slurry concentration (for use in modeling gasifiers). 

SLURRY_CONC=(FUEL_M-H20_M_FUEL)/FUEL_M; 

Using the fuel weight fractions, calculate the weights of the individual elements found in 
1 kg of fuel. 

BCd)=0.0; 
BC(2)=FL.C*CARB0N_BURN0UT; 
BC(3)=FL.H+0.111902-*FL.H2O; 
BC(4)=0.0; 
BC(5)=FL.N; 
BC(6)=FL.O+0.888098*FL.H2O; 
BC(7)=FL.S; 
BC(8)=FL.CL; 

Assuming 100% oxidation of the carbon, sulfur, and hydrogen within the fuel, calculate 
the amount of oxygen required. 

OX_M=2.6641*FL.C*FUEL_M+7.93645*FL.H*FUEL_M+0.99797*-FL.S*FUEL_M-
FL.O*FUEL_M; 

Calculate the total weights of the elements within the gas produced when burned at 
stoichiometric conditions. (This calculation will be used to determine the heat of 
formation of the fuel.) 

BG=BC*FUEL_M; 
BG(6)=BG(6)+OX_M; 
BG=BG/(FUEL_M+OX_M); 

Set the conditions of the gas burned at stoichiometric conditions and then call the 
properties code to determine the enthalpy of the gas. This gas enthalpy will then be used 
to determine the heat of formation of the fuel. 

GAS.TEMP=298.16; 
GAS.PRES=1.0; 
GAS.ATOM=BG/AW; 
GAS.ID='GAS'; 

GAS.WTF=(ASH_M_FUEL+FL.C*d.0-CARBON_BURNOUT))/(FUEL M+OX M ) ; 
CALL GP(NAME,GAS,1B); 

Calculate the amount of energy needed to vaporize the water within the gas. 

GASNM ( GAS. COMP, NMOLE ) ; 

FRAC=1.050e5E3*2.324444E3*18.01534*NMOLE*GAS.XH2O; 

Using the calculated gas enthalpy, the amount of water vaporization energy, and the 
higher heating value of the fuel, calculate the heat of formation of the fuel. 



25 

FUEL_HEAT_FORM=((FUEL_M+OX_M)*(GAS.ENTH-FRAC)+ 
FUEL_M*FUEL_HHV)/FUEL_M; 

Calculate the weight fraction of any potassium that may be injected into the gas (for use 
in open-cycle MHD systems). 

K_MASS=(FUEL_M+OX_M)*K_FRAC/d .0-K_FRAC) ; 

Calculate the gas mass that will leave the combustor. 

GAS.MASS=FUEL_M+AIR.MASS+K_MASS; 
GAS.WTF=ASH_M_FUEL/GAS.MASS; 

Using the kg-atoms/kg fractions of the elements within the oxidizer stream, plus the fuel 
element fractions and any added potassium, calculate the kg-atoms/kg fractions of the 
elements in the combustion gas. 

ST0ICH=B0(6)*AIR.MASS/0X_M; 
BG=BO*AIR.MASS+BC*FUEL_M; 
BG(4)=BG(4)+K_MASS; 
BG=BG/GAS.MASS; 

Set the exit conditions of the combustion gases and call the properties code to determine 
the other s ta te values for the gas (i.e., density, entropy, etc.) 

GAS.ATOM=BG/AW; 
GAS.VEL=FLC2.VEL; 
GAS.PRES=AIR.PRES; 
GAS.ENTH=(AIR.ENTH*AIR.MASS+FUEL_M*FUEL_HEAT_FORM-POWER.LOSS) 
/GAS.MASS; 
GAS.TEMP=FLC2.TEMP; 
CALL GP(NAME,GAS,10B); • 

Save the input air flow and the exiting combustion-gas flow. 

FLC1=AIR; 
FLC2=GAS; 
RETURN; 

CBOUT: ENTRY(CB P); 
PUT SKIP EDIT("̂  ' ,NAME)(C0L(4),A); 
PUT SKIP(2) EDIT( 

'FUEL MASS BURNED = ',PARM.FUEL_M, 
'FUEL HHV = ',PARM.FUEL_HHV, 
'FUEL HEAT OF FORM AS BURNED = ',PARM.FUEL_HEAT_FORM, 
'HEAT LOSS FRACTION = ' ,PARM.HEAT_LOSS_FRAC, 
'STOICHIOMETRY = ',PARM.STOICH, 
'CARBON BURNOUT = ' ,PARM.CARBON_BURNOUT, 
'ASH MASS REMOVED = ',PARM.ASH_M, 
'ASH MASS IN FUEL = ',PARM.ASH_M_FUEL, 
'WATER MASS IN FUEL = ' ,PARM.H20_M_FUEL, 
'SLURRY CONCENTRATION = ',PARM.SLURRY CONG, 



26 

'POTASSIUM MASS = ',PARM.K_MASS, 
'SEED FRACTION = ' ,PARM.K_FRAC ) (COL(IO) , A,Ed2 , 5 ) ) ; 

PUT SKIP(2) EDITCFUEL ELEMENT FRACTIONS (AS BURNED)' )(COLd0) ,A) 
('ARGON','CARBON','HYDROGEN','POTASSIUM','NITROGEN','OXYGEN', 
'SULFUR','CHLORINE', PARM. BC)(COL(15),8 A(10 ) ,C0Ld3) ,8 Fd0,6)); 

PUT SKIP(2) EDIT('OXIDIZER ELEMENT FRACTIONS')(COL(10),A) 
('ARGON','CARBON','HYDROGEN','POTASSIUM','NITROGEN','OXYGEN', 
'SULFUR','CHLORINE',PARM.B0)(C0L(15),8 A(10 ) ,C0Ld3) ,8 Fd0,e)); 

PUT SKIP(2) EDITCGAS ELEMENT FRACTIONS ' )(COL(10 ),A) 
('ARGON','CARBON','HYDROGEN','POTASSIUM','NITROGEN','OXYGEN' , 
'SULFUR','CHLORINE',PARM.BG)(C0L(15),8 A(10) ,C0Ld3) ,8 F(10,6)); 

END CBC; 

A.2 COMPRESSOR MODEL 

A.2.1 Description of Model 

The compressor model (CP) requires one pass-through flow of the generic type of 
GAS. A simplified off-design option is also provided. In the design mode, the model 
obtains the exit flow conditions by calculating an isentropic compression to a specified 
exit pressure and then corrects for a specified isentropic efficiency. In off-design use, a 
nondimensional mass factor is also calculated. 

In the off-design mode, the model requires an initializing call to CPIN to obtain a 
table of pressure ratios vs. the mass factor (normalized by the design-point mass 
factor). During flow processing, the model then uses this table to calculate (based on the 
inlet mass factor) the pressure ratio and, hence, the exit pressure. The model then 
proceeds as in the design mode. 

The parameters of the CP model are as follows; 

DDNAME — Character string representing the file name of the off-
design pressure-ratio-vs.-mass-factor table. This variable is not needed 
in the design mode. The information in this file consists of (1) an 
integer specifying the number of pressure-ratio values, followed by (2) 
the list of pressure-ratio values and by (3) the list of normalized mass-
factor values. 

MODE — Character string representing either DESIGN mode or OFF-
DESIGN mode. 

EXIT PRES — Specified exit pressure for the design mode. 

EFFICIENCY — Specified isentropic efficiency of the compression 
process. 

MASS_FACT — Calculated mass factor for use in off-design 
calculations. This factor is an output in the design mode, but it must 
be an input in the off-design mode. 



27 

M FACT — Calculated value of the normalized mass factor used in off-
design calculations. This variable is assigned the value 1 at the design 
point. 

PRES RATIO ~ Calculated pressure ratio across the compressor. 

A.2.2 Declaration Structure 

* PROCESS NAME('CPC'); 
CPC: PROC( C P P , AIR_P ) ; 

DCL (CP_P, AIR_P) POINTER; 
DCL 1 CP BASED(CP_P), 

2 NAME CHARde) , 
2 FLC, 

3 FNAME CHARde) , 
3 ID CHARde) VARYING, 
3 AT0M(8) FLOATde) , 
3 PROP, 

4 (TEMP,PRES,ENTH,ENTP,QUAL,RHO,VEL,MASS) FL0AT(16), 
3 COMP, 

4 (XAR,XCH4,XCO,XC02,XH,XH2,XH20,XH2S,XK,XKOH,XNO,XN2, 
XO,XOH,X02,XS02,XHCL,XCH30H,XC,XCOS,XNH3,XS,XCL) FLOATde) , 

3 SOL, 
4 WTF FLOATde) , 

2 PARM, 
3 DDNAME CHAR(7), 
3 MODE CHARdO), 
3 EXIT_PRES FLOATde), 
3 EFFICIENCY FLOATde), 
3 MASS_FACT FL0ATd6), 
3 M_FACT FLOATde), 
3 PRES_RATI0 FLOATde), 

2 POWER, 
3 (INPUT,PRODUCED,CONSUMED,LOSS) FLOAT(ie), 

2 PRATIO, 
3 PTR POINTER, 

2 COST FLOATde); 
DCL AIR BASED(AIR_P) LIKE FLC; 
DCL (GP, TABC, TABIN) ENTRY, 

SOV ENTRY( FLOATde), FLOATde), FIXED BIN(15) , FLOATde ) , 
FLOATde), FIXED BINd5),FIXED BIN(15 ) ,CHAR(*) ) , 

(GOV INIT(101325.0)) FLOAT(ie); 

Initialize power to zero. 

POWER = O.OEO; 



28 

Save the inlet values of the input flow. 

FLC=AIR; 
IF MODE='DESIGN' THEN 

DO; 

If in the design mode, call the procedure CPl , which will perform the calculations of the 
compression process. 

CALL CP1(EXIT_PRES,EFFICIENCY); 

Calculate the value of the mass factor to be used in any off-design run. 

MASS_FACT=FLC.MASS/SQRT(FLC.PRES*COV*FLC.RHO); 
M_FACT=1.0; 

Calculate the pressure ratio across the compressor. 

PRES_RATIO=EXIT_PRES / FLC. PRES ; 
END; 

ELSE 
DO; 

If in the off-design mode, use the mass factor from the design-mode run to calculate the 
normalized inlet mass factor for the off-design conditions. 

M_FACT=FLC.MASS/SQRT(FLC.PRES*COV*FLC.RHO)/MASS_FACT; 

Using the normalized mass factor, call the response surface (i.e., the pressure ratio vs. 
normalized mass factor) to obtain the pressure ratio. 

TABC( PRATIO, MFACT, PRES_RATIO ) ; 

Calculate the exit pressure. 

EXIT_PRES=PRES_RATIO*FLC. PRES; 

Calculate the conditions at the exit of the compression process by calling C P l . 

CALL CP1(EXIT_PRES,EFFICIENCY); 
END; 

Calculate the power consumed during the compression. 

POWER.CONSUMED=FLC.MASS*(AIR.ENTH-FLC.ENTH); 
COST = 0 .0 ; 

Save the exit flow. 



29 

FLC = AIR; 
RETURN; 

C P l : PROC(POUT,EFF) ; 
DCL (P_OUT,EFF) FLOAT( ie ) ; 

Set the value of the exit pressure. 

AIR.PRES=P_OUT; 

Calculate the conditions of the flow at the given exit pressure and with the inlet value of 
the entropy (i.e., at isenthalpic conditions). 

CALL GP(NAME,AIR,11B); 

Calculate the enthalpy at the exit of the compression using the isenthalpic enthalpy and 
the efficiency of the process. 

AIR.ENTH-FLC.ENTH+(AIR.ENTH-FLC.ENTH)/EFF; 

Call the properties code to obtain the other state variables of the flow at the exit of the 
compressor. 

CALL GP(NAME,AIR,10B); 
END G P l ; 

CPIN: ENTRY(CP_P); 
IF MODE='DESIGN' THEN 
CALL TABIN(PRATIO,DDNAME); 

RETURN; 

CPOUT: ENTRY(CP P); 
PUT SKIP EDITC^ ',NAME)(C0L(4),A); 
PUT EDITCMODE = '.MODE, 

'EXIT PRES = ',EXIT_PRES, 
'EFFICIENCY = ',EFFICIENCY, 
'MASS FACTOR = ',MASS_FACT, 
'M FACTOR = ',M_FACT, 
'PRESSURE RATIO = ',PRES_RATIO) 

(SKIP(2),COLd0),A,A,6 (SKIP,COL(IO),A,£(13,5))); 
END CPC; 

A.3 DEAERATOR MODEL 

A.3.1 Description of Model 

The deaerator model (DEAR) requires two steam flows, the first of which is a 
pass-through flow representing not only one of the input flows, but also the output flow 
from the model. The DEAR model is also a demand-type model, requiring that the exit 
flow be saturated. 



30 

The only parameter of the DEAR model is QUAL, the output flow quality from 

the model. For proper modeling of a deaerator, this parameter should be constrained to 

equal zero by imposing some system constraint. 

A.3.2 Declaration Structure 

* PROCESS N A M E C D E A R C ' ) ; 

DEARC: PROC(DEAR_P, F1_P, F2_P) ; 

DCL (DEAR_P, F1_P, F2_P) POINTER; 
DCL 1 DEAR BASED(DEAR_P), 

2 NAME CHARde) , 
2 FLCl, 

3 FNAME CHARde) , 
3 ID CHARde) VARYING, 
3 AT0M(8) FLOATde) , 
3 PROP, 

4 (T ,P ,H,S ,Q,R,V,M) FLOATde) , 
3 COMP, 

4 (XAR,XCH4,XCO,XC02,XH,XH2,XH20,XH2S,XK,XKOH,XNO,XN2, 
XO,XOH,X02,XS02,XHCL,XCH30H,XC,XCOS,XNH3,XS,XCL) FLOATde) , 

3 SOL, 
4 WTF FLOATde) , 

2 FLC2, 
3 FNAME CHARde), 
3 ID CHARde) VARYING, 
3 AT0M(8) FLOATde), 
3 PROP, 

4 (T,P,H,S,Q,R,V,M) FL0AT(16), 
3 COMP, 
4 (XAR,XCH4,XCO,XC02,XH,XH2,XH20,XH2S,XK,XKOH,XNO,XN2, 
XO,X0H,X02,XSO2,XHCL,XCH30H,XC,XCOS,XNH3,XS,XCL) FLOATde), 

3 SOL, 
4 WTF FLOATde) , 

2 PARM, 
3 QUAL FLOATde); 

DCL GP ENTRY, 
(KE,PC,MASS,R,S,Q,HL,HS) FLOATde); 

DCL Fl BASED(F1_P) LIKE FLCl; 
DCL F2 BASED(F2_P) LIKE FLC2; 

Save the inlet flow. 

FLC2=F2; 

Add the two inlet flow masses together. 

MASS=F1.M+F2.M; 

Calculate the total kinetic energy of the inlet flows. 

KE=F1.M*F1. V**2 + F2.M*F2.V**2; 



31 

Set the exit pressure from the deaerator as the minimum of the inlet pressures. 

F1.P=MIN(F1.P,F2.P); 

Set the exit velocity as that which will give the same total kinetic energy as the 
combined inlet flows. 

F1.V=SQRT(KE/MASS); 

Set the exit enthalpy to equal the sum of the inlets. 

F1.H=(F1.M*F1.H+F2.M*F2.H)/MASS; 
F1.M=MASS; 

Call the properties code to determine the other s ta te variables of the flow. 

CALL GP(NAME,F1,10B); 

Save the value of the exit flow quality. 

PARM.QUAL=F1.PROP.Q; 

Save the value of the exit flow in FLCl . 

FLC1=F1; 
RETURN; 

DEAROUT: ENTRY(DEAR_P); 
PUT SKIP E D I T C ' ,NAME)(C0L(4),A) 
('QUAL=',PARM.QUAL)(SKIP,COL(10),A,E(12,4)); 

END DEARC; 
* 

A.4 GAS-DIFFUSER MODEL 

A.4.1 Description of Model 

The gas-diffuser model (DF) requires one pass-through flow of the generic type 
GAS. The parameters of the DF model are as follows: 

EXIT VEL — Specified exit velocity of the gas flow. 

P R E S R E C O V E R Y C O E F ~ Specified value of the pressure-recovery 
coefficient, defined as the actual pressure drop across the diffuser 
divided by the difference in the total s ta t ic pressure at the diffuser 
inlet. 

PRINT — Specified print switch; if set to a number greater than zero, 
this switch will print out the iterations within the model used in 
calculating the total inlet pressure. 



32 

A.4.2 Declaration Structure 

* PROCESS NAMECDFC ) ; 
DFC: PROC(DF_P, GAS_P); 

DCL (DF_P, GAS_P) POINTER; 
DCL 1 DF BASED(DF_P), 

2 NAME CHARde), 
2 FLC, 
3 FNAME CHARde), 
3 ID CHAR(ie) VARYING, 
3 AT0M(8) FLOATde), 
3 PROP, , ^ 
4 (TEMP,PRES,ENTH,ENTP,QUAL,RHO,VEL,MASS) FLOATde), 

3 COMP, 
4 (XAR,XCH4,XCO,XC02,XH,XH2,XH20,XH2S,XK,XKOH,XNO,XN2, 

XO,XOH,X02,XS02,XHCL,XCH30H,XC,XCOS,XNH3,XS,XCL) FLOATde), 

3 SOL, 
4 WTF FLOATde), 

2 PARM, 
3 EXIT_VEL FLOATde), 
3 PRES_RECOVERY_COEF FLOATde) , 
3 PRINT FIXED B I N d 5 ) , 

2 COST, 
3 TOTAL FLOATde); 

DCL GAS BASED(GAS_P) LIKE FLC, 
(Q, R, S, DIFFERENCE) FLOAT(ie), 
I FIXED B I N ( I 5 ) , 
SOV ENTRY(FLOAT(ie),FLOAT(ie),FIXED BIN(15) ,FLOAT(ie) 

,FLOATde),FIXED BINd5) ,FIXED B I N d S ) ,CHAR(*) ) , 
GP ENTRY; 

Save the inlet gas flow and then temporarily set the total enthalpy in FLC.ENTH. 

FLC = GAS; 
FLC. ENTH=GAS. ENTH+0. 5*GAS. VEL--*2 ; 

Iterate over the gas pressure until the gas enthalpy is equal to this total enthalpy, thus 
obtaining the total pressure. 

DO 1=1 TO 15; 
CALL GP(NAME,GAS,11B); 
DIFFERENCE=FLC.ENTH-GAS.ENTH; 
CALL SOV(GAS.PRES,DIFFERENCE,I ,1 .0 ,20.0 ,15,PRINT,'DF'); END; 

Set the flow's exit velocity to the specified value and then calculate the flow's s tat ic 
enthalpy. 

GAS.VEL=EXIT_VEL; 
GAS. ENTH=GAS. ENTH-0 . 5*GAS. VEL**2 ; 

Using the pressure-recovery factor, calculate the exit pressure from the diffuser. 

GAS.PRES=FLC.PRES+(GAS.PRES-FLC.PRES)*PR£S RECOVERY COEF; 



33 

Call the properties code to determine the other s ta te variables of the flow. 

CALL GP(NAME,GAS,10B); 
COST.TOTAL = 0.0; 

Save the exit flow from the diffuser. 

FLC = GAS; 
RETURN; 

DFOUT: ENTRY(DF_P); 
PUT SKIP E D I T C ',NAME)(C0L(4),A); 
PUT SKIP(2) EDIT( 

'PRESSURE RECOVERY COEFFICIENT = ',PRES_RECOVERY_COEF, 
'EXIT VELOCITY = ',EXIT_VEL) 
(COLdO),A,E(12,5)); 

END DFC; 

A.5 FUEL-DRYER MODEL 

A. 5.1 Description of Model 

The fuel-dryer model (DRY) has two flow-processing entry points, DRYC and 
DRYH. The DRYC entry, which processes the fuel input and requires a pass-through 
flow of the generic type FUEL, performs the calculations involved in drying the fuel to a 
specified water fraction and calculates the heat energy required to vaporize the removed 
water. This entry must be called before the DRYH entry, which processes the hot-gas 
drying flow and should be of the generic type GAS. 

The parameters of the DRY model are as follows: 

H20 DET — Specified weight fractions of water in the dried fuel. 

H20 M — Calculated mass of water removed from the fuel. 

HEATREQUIRED — Calculated energy required to vaporize the water 
mass removed. 

A.5.2 Declaration Structure 

* PROCESS N A M E C D R Y C ' ) ; 
DRYC: PROC(DRY_P, FUEL_P); 

DCL (DRY_P, FUEL_P, FLOW_P) POINTER; 
DCL 1 DRY BASED(DRY_P), 

2 NAME CHARde), 2 FLH, 
3 FNAME CHARde), 



34 

3 ID CHAR(ie) VARYING, 
3 AT0M(8) FLOAT(ie), 
3 PROP, 
4 (TEMP,PRES,ENTH,ENTP,QUAL,RHO,VEL,MASS) FLOATde), 

3 COMP, 
4 (XAR,XCH4,XCO,XC02,XH,XH2,XH20,XH2S,XK,XKOH,XNO,XN2, 
XO,XOH,X02,XS02,XHCL,XCH30H,XC,XCOS,XNH3,XS,XCL) FLOATde), 

3 SOL, 
4 WTF FLOATde), 

2 FU, 
3 FNAME CHARde), 
3 PROP, 
4 (TEMP,MASS,HHV) FLOAT(ie), 

3 WEIGHTS, 
4 (C,H,0,N,S,CL,H20,ASH) FL0AT(16), 

2 PARM, 
3 HEAT_REQUIRED FL0AT(16), 
3 H20_DET FLOATde), 
3 H20_M FLOATde); 

DCL FUEL BASED(FUEL_P) LIKE FU; 
DCL FLOW BASED(FLOW_P) LIKE FLH; 
DCL (NM,FRAC,FUEL_M) FLOATde); 
DCL (GP,GASNM,GASBW) ENTRY; 

Based on the specified weight fraction of the water on output (H20 DET), calculate the 
new weight of fuel after drying. 

FRAC=(1.0-H20_DET)/(1.0-FUEL.WEIGHTS.H20); 
FUEL_M=FUEL.MASS/FRAC; 

Adjust the fuel's higher heating value to reflect the loss of water. 

FUEL.HHV=FRAC~FUEL.HHV; 

Adjust the fuel's weight fractions for the new water content. 

FUEL.WEIGHTS=FRAG*FUEL.WEIGHTS; 
FUEL.WEIGHTS.H20=H20_DET; 

Calculate the amount of water removed from the fuel and the amount of heat required to 
vaporize that amount of water. The fuel is assumed to be at atmospheric conditions. 

H20_M=FUEL.MASS-FUEL_M; 
HEAT_REQUIRED=1050.e5*2344.444*H2O_M; 
FUEL.MASS=FUEL_M; 
FU=FUEL; 
RETURN; 

DRYH; ENTRY(DRY_P, FLOW_P); 

Calculate the molar flow rates of the drying gas species and temporarily store these 
rates within the COMP structure. 



35 

CALL GASNM(FLOW.COMP,NM); 
FLOW.COMP=FLOW.COMP^-NM*FLOW.MASS--^d.0-FLOW. WTF); 

Add the number of moles of water removed from the fuel to the number of moles of 
water already within the drying gas. 

FLOW.COMP.XH20=FL0W.COMP.XH20+H20_M/18.01534; 

Adjust the mass of gas to reflect the added weight of the water. Also adjust the 
entrained-solids weight fraction. 

FLOW.WTF=FL0W.WTF*FLOW.MASS/(FLOW.MASS+H20_M); 
FL0W.MASS=FL0W.MASS+H20_M; 

Recalculate the elemental fractions within the gas flow and adjust the enthalpy of the 
gas to reflect the heat lost while drying the fuel. 

CALL GASBW(FLOW.COMP,FLOW.ATOM); 
FLOW.ENTH=FLOW.ENTH-HEAT_REQUIRED/FLOW.MASS; 

Calculate the exit flow conditions of the gas by calling the properties code with the new 
enthalpy value as input. 

CALL GP(NAME,FLOW,10B); 

Save the exit gas flow. 

FLH=FLOW; 
RETURN; 

DRYOUT: ENTRY(DRY P); • 
PUT SKIP EDITC '^,NAME)(C0L(4),A) 
('FUEL HHV=',FU.HHV,'FUEL MASS=',FU.MASS,'H20_DET=',H20_DET, 
'H20 REMOVED=',H20_M,•HEAT_REQUIRED=',HEAT_REQUIRED) 
(COL(10),A,E(12,5)); 

PUT SKIP(2) EDITCFUEL WEIGHT FRACTIONS'XCOLdO) ,A) 
('CARBON','HYDROGEN','OXYGEN','NITROGEN','SULFUR','CHLORINE', 
'WATER','ASH',FU.WEIGHTS)(COLd5),8 A(10) ,C0Ld3) ,8 F(10,e)); 

END DRYC; 

A.6 FEEDWATER-HEATER MODEL 

A. 6.1 Description of Model 

The closed feedwater heater modeled by FH incorporates desuperheating, 
condensing, and drain-cooling zones. The model is set up to process the hot flows — 
extracted from the turbine and from higher-pressure feedwater heaters — in one entry 
and the cold feedwater flow in another. The hot-flow entry (FHH) requires one pass-
through flow (representing the turbine extraction flow on input and the drain-cooler exit 



36 

flow on output) and one input flow (representing any cascaded flow from a higher-
pressure feedwater heater). This hot-flow entry must be called before the cold-flow 
entry (FHC), which requires one pass-ttirough flow. All of the flows used within the FH 
model are of the generic type STM. 

The parameters of the FH model are as follows: 

SUBCOOL — Specified amount of subcooling of the drain-cooler exit 
flow. 

HEAT — Calculated total amount of heat transferred from the hot 
flows to the cold flow. 

AREA — Calculated total surface area of the desuperheating and 
condensing regions of the feedwater heater. 

TTD — Calculated terminal temperature difference, defined as the 
difference in temperature between the hot-flow exit temperature from 
the condensing region and the cold-flow exit temperature from the 
desuperheating region. 

TSAT ~ Calculated hot-flow saturation temperature at the pressure 
within the condensing region. 

FWVEL — Specified velocity of the cold feedwater flow through the 
condensing region. 

DCTD — Calculated drain-cooler temperature difference, defined as 
the temperature difference between the hot-flow exit temperature 
from the heater and the cold-flow entrance temperature. 

HDP — Specified flow pressure-drop fraction. (The pressure drop is 
equal to this parameter times the input pressure.) 

CDP(3) — Specified array of cold-flow pressure-drop fractions through 
the desuperheating section, CDP(l); the condensing section, CDP(2); 
and the drain-cooler section, CDP(3). 

A(3) — Calculated array of heat-transfer-surface areas for the 
individual feedwater-heater regions: desuperheater, 1; condenser, 2; 
and drain cooler, 3. 

Q(3) — Calculated array of heat-transfer values for the three regions of 
the heater. 

U(3) — Calculated array of heat-transfer coefficients for the three 
regions of the heater. 



37 

LDTD(3) ~ Calculated array of log mean temperature differences for 
the three regions of the heater. 

HTEMP(4) — Calculated end-point temperatures of the hot flow 
between the tliree regions of the heater, where HTEMP(l) is the inlet 
temperature and HTEMP(4) is the exit temperature from the heater. 
Because HTEMP(2) and HTEMP(3) represent the hot-flow condensing-
region temperatures, these two temperatures are both equal to the 
saturation temperature. 

CTEMP(4) ~ Calculated cold-flow temperatures between the three 
regions of the heater, where CTEMP(l) is the exit temperature and 
CTEMP(4) is the cold-flow inlet temperature. 

A.6.2 Declaration Structure 

* PROCESS NAMECFHH' ); 
FHH: PROC(FH_P, STM_P, STME_P); 

DCL (FH_P, STM_P, STME_P, STMF_P) POINTER; 
DCL 1 FH BASED(FH_P), 

2 NAME CHARde) , 
2 FLHl, 

3 FNAME CHARde) , 
3 ID CHARde) VARYING, 
3 AT0M(8) FLOATde) , 
3 PROP, 

4 (TEMP,PRES,ENTH,ENTP,QUAL,RHO,VEL,MASS) FL0AT(16) , 
3 COMP, 

4 (XAR,XCH4,XCO,XCO2,XH,XH2,XH20,XH2S,XK,XKOH,XNO,XN2, 
XO,XOH,X02,XS02,XHCL,XCH30H,XC,XCOS,XNH3,XS,XCL) FLOATde) , 

3 SOL, 
4 WTF FLOATde) , 

2 FLH2, 
3 FNAME CHARde), 
3 ID CHARde) VARYING, 
3 AT0M(8) FLOAT(ie), 
3 PROP, 
4 (TEMP,PRES,ENTH,ENTP,QUAL,RHO,VEL,MASS) FLOAT(ie), 

3 COMP, 
4 (XAR,XCH4,XCO,XC02,XH,XH2,XH20,XH2S,XK,XKOH,XNO,XN2, 
XO,XOH,X02,XS02,XHCL,XCH30H,XC,XCOS,XNH3,XS,XCL) FLOATde), 

3 SOL, 
4 WTF FLOATde), 

2 FLC, 
3 FNAME CHARde), 
3 ID CHARde) VARYING, 
3 AT0M(8) FLOATde), 
3 PROP, 
4 (TEMP,PRES,ENTH,ENTP,QUAL,RHO,VEL,MASS) FLOATde), 



38 

3 COMP, 
4 (XAR,XCH4,XC0,XC02,XH,XH2,XH2O,XH2S,XK,XKOH,XNO,XN2, 
X0,X0H,XO2,XS02,XHCL,XCH3OH,XC,XCOS,XNH3,XS,XCL) FLOATde) , 

3 SOL, 
4 WTF FLOATde) , 

2 PARM, 
3 SUBCOOL FLOATde) , 
3 HEAT FLOATde) , 
3 AREA FLOATde) , 
3 TTD FLOATde) , 
3 TSAT FLOATde) , 
3 FW_VEL FLOATde) , 
3 DCTD FLOATde) , 
3 HDP FLOATde) , 
3 CDP(3) FLOATde) , 
3 A(3) FLOATde) , 
3 Q(3) FLOAT(ie), 
3 U(3) FLOATde) , 
3 LMTD(3) FLOATde) , 
3 HTEMP(4) FLOATde) , 
3 CTEMP(4) FLOATde); 

DCL STM BASED(STM_P) LIKE FLHl, 
STME BASED(STME_P) LIKE FLH2, 
STMF BASED(STMF_P) LIKE FLC; 

DCL (PC,HC,HL,HS,X,Y) FLOATde); 
DCL (GP,GPSAT) ENTRY; 

Set the steam pressure going into the desuperheating zone after any pressure drop. 

STM.PRES=STM.PRES*(1-HDP); 

Calculate the steam conditions going into the desuperheating zone. 

CALL GP(NAME,STM,10B); 

Save the steam temperature going into the desuperheating zone. 

HTEMPd)=STM.TEMP; 

Calculate the saturation enthalpies and critical pressure at the desuperheating-zone 
pressure. 

CALL GPSAT(NAME,STM,PC,HL,HS); 
IF STM.PRES>PC THEN 

DO; 
PUT EDITC INLET PRES OF ' ,STM.PRES,' TO FEEDWATER HEATER ' , 

FH.NAME,' IS GREATER THAN THE CRITICAL PRESSURE OF ' , 
P C ) ( S K I P ( 2 ) , A , E ( 1 2 , 4 ) , A , A , S K I P , A , E ( 1 2 , 4 ) ) ; 

STOP; 
END; 

IF STM.ENTH>HS THEN 
DO; 



39 

Calculate the heat loss by the steam to reach near-saturation conditions. (Actually, 80% 
of the heat needed to reach saturation conditions is used, because this value is more 
representative of the temperature used in calculating surface areas.) 

Qd)=0.8*STM.MASS*(STM.ENTH-HS); 
STM. ENTH=STM. ENTH-0. 8*( STM. ENTH-HS ) ; 

END; 
ELSE 

If the steam is already in the two-phase region, set Q(l) to zero. 

Q ( 1 ) = 0 . 0 ; 

Calculate the steam conditions coming out of the desuperheating zone. 

CALL GP(NAME,STM,10B); 

Store the steam temperature coming out of the desuperheating-zone. 

HTEMP(2)=STM.TEMP; 
IF STME.MASS>0.0 THEN 

DO; 

If the second flow to the heater is nonzero (i.e., there exists a cascade flow from a 
higher-pressure heater), then mix this flow with that coming out of the desuperheating 
zone. 

STM.ENTH=STME.MASS*STME.ENTH+STM.MASS*STM. ENTH; 
STM.MASS=STME.MASS+STM.MASS; 
STM.ENTH=STM.ENTH/STM.MASS; 

END; 
IF STM.ENTH>HL THEN • 

DO; 

Set the flow conditions coming out of the condensing zone. 

Q(2)=STM.MASS*(STM.ENTH-HL); 
STM.ENTH=HL; 
STM.QUAL=0.0; 

END; 
ELSE 

Q ( 2 ) = 0 . 0 ; 

Calculate the other steam properties coming out of the condensing zone. 

CALL GP(NAME,STM,10B); 

Store the steam temperature coming out of the condensing zone. 

HTEMP(3),TSAT=STM.TEMP; 
IF SUBCOOL>0.0 THEN 

DO; 



40 

If any subcooling was requested, set the conditions at the subcooled point. 

STM.TEMP=STM.TEMP-SUBCOOL; 
HC=STM.ENTH; 
CALL GP(NAME,STM,1B); 
Q(3)=STM.MASS*(HC-STM.ENTH); 

END; 
ELSE 
Q(3)=0.0; 

Store the temperature of the steam coming out of the subcooled zone. 

HTEMP(4)=STM.TEMP; 
FLH1=STM; 
FLH2=STME; 
RETURN; 

FHC: ENTRY(FH_P,STMF_P); 

Save the inlet feedwater temperature. 

CTEMP(4)=STMF.TEMP; 
IF Q(3)=0.0 THEN 

DO; 

If the subcooling or drain-cooler zone exists, then set the conditions of the feedwater 
flow coming out of the zone. 

STMF.ENTH=STMF.ENTH+Q(3)/STMF.MASS; 
STMF.PRES = STMF.PRES*-(1-CDP(3)); 
CALL GP(NAME,STMF,10B); 

Save the temperature of the feedwater coming out of the drain-cooler zone. 

CTEMP(3)=STMF.TEMP; 

Calculate the log mean temperature difference for the drain-cooler zone using the saved 
values of the hot and cold flow temperatures. (Note: DTMEAN will return a fictitious 
temperature if the hot and cold temperatures cross over.) 

CALL DTMEAN(HTEMP(3)-CTEMP(3), HTEMP(4)-CTEMP(4), LMTD(3)); 

Calculate the heat-transfer coefficient for the drain-cooler region if U(3) is not 
negative; otherwise, use the input value of U(3). 

IF U(3)>=0.0 THEN 
DO; 

X=CTEMP(3)*1.8-4e0.0; 
U(3)=5.e744ee*(300.0+0.33*(X-150.0))*(FLH1.MASS/5.0505)** 

O. ie ; 
END; 



41 

Calculate the heat-transfer surface area of the drain-cooler region. 

IF U(3)*LMTD(3)=0.0 THEN 
A(3)=Q(3)/(ABS(U(3))*LMTD(3)); 

ELSE 
A(3)=1E10; 

END; 
ELSE 

DO; 

If the drain-cooler region does not exist, set the exit feedwater temperature equal to the 
inlet temperature and set the log mean temperature and surface area equal to zero. 

CTEMP(3)=STMF.TEMP; 
LMTD(3)=0.0; 
A(3)=0.0; 

END; 
IF Q(2)=0.0 THEN 

DO; 

If the condensing region exists, then set the conditions of the feedwater flow coming out 
of the region. 

STMF.ENTH=STMF.ENTH+Q(2)/STMF.MASS; 
STMF.PRES=STMF.PRES-(1-CDP(2)); 
CALL GP(NAME,STMF,10B); 

Save the feedwater temperature coming out of the region. 

CTEMP(2)=STMF.TEMP; 

Calculate the log mean temperature difference for the^egion. 

CALL DTMEAN(HTEMP(2)-CTEMP(2), HTEMP(3)-CTEMP(3), LMTD(2)); 

If U(2) > 0, then calculate the heat-transfer coefficient; otherwise, use the input value. 

IF U(2)>=0.0 THEN 
DO; 

X=(TSAT-0.8*LMTD(2))*1.8-460.0; 
U(2)=5.674466*(450.0+2.0*(X-100.0))*(FW_VEL/1.640**0.47; 

END; 

Calculate the surface area of the condensing region. 

IF U(2)*LMTD(2)=0.0 THEN 
A(2)=Q(2)/(ABS(U(2))*LMTD(2)); 

ELSE 
A(2)=1E10; 

END; 
ELSE 

DO; 



42 

If the condensing region does not exist, set the saved value of the feedwater temperature 
coming out of the region equal to the input temperature and set the area and log mean 
temperature equal to zero. 

CTEMP(2)=STMF.TEMP; 
LMTD(2)=0.0; 
A(2)=0.0; 

END; 
IF Q(1)=0.0 THEN 

DO; 

If the desuperheating region exists, set the conditions of the feedwater flow coming out 
of the region. 

STMF.ENTH=STMF.ENTH+Q(1)/STMF.MASS; 
STMF.PRES=STMF.PRES*(1-CDP(1)); 
CALL GP(NAME,STMF,10B); 

Save the exit feedwater temperature. 

CTEMPd)=STMF.TEMP; 

Calculate the log mean temperature difference. 

CALL DTMEAN(HTEMP(l)-CTEMPd), HTEMP(2)-CTEMP(2), LMTDd)); 

If 0(1) > 0, then calculate the heat-transfer coefficient; otherwise, use the input value. 

IF U(1)>=0.0 THEN 
DO; 

X=14.7*FLH1.PRES; 
Y=FLH1.MASS-FLH2.MASS; 
U(l)=5.6744ee*(100+0.06*(X-400))*(Y/10.10)**0.4; 

END; 

Calculate the surface area of the desuperheating region. 

IF U(1)*LMTD(1)=0.0 THEN 
A(l)=Q(l)/(ABS(U(l))*LMTDd)); 

ELSE 
A(1)=1E10; 

END; 
ELSE 
DO; 

If the desuperheating region does not exist, set saved temperature, log mean 
temperature, and surface area. 

CTEMP(1)=STMF.TEMP; 
LMTD(1)=0.0; 
A d ) = 0 . 0 ; 

END; 



43 

Save the total surface areas of the desuperheating region and condensing region. 

AREA=A(1)+A(2); 

Save the terminal temperature difference. 

TTD=HTEMP(3)-CTEMP(1); 

Save the drain-cooler temperature difference. 

DCTD=HTEMP(4)-CTEMP(4); 

Save the total heat transferred in the heater. 

HEAT=Q(1)+Q(2)+Q(3); 

Save the exit feedwater flow. 
FLC=STMF; 
RETURN; 

DTMEAN: PROC(X,Y,LMTD); 
DCL (X,Y,LMTD) FLOAT(ie); 

SELECT; 
WHEN (X>0. & Y>0. & X=Y) 

LMTD=(X-Y)/LOG(X/Y); 
WHEN (X>0. & Y>0. & X=Y) 

LMTD=X; 
WHEN (Y<=0. & X>=0. ) 

LMTD=-SQRT(ABS(Y)); 
WHEN (X<=0. & Y>=0. ) 

LMTD=-SQRT(ABS(X)); 
WHEN (X<0. & Y<0 . ) , 

LMTD=-(X**2 + Y * * 2 ) * * 0 . 2 5 ; 
END; 

END DTMEAN; 

FHOUT: ENTRY(FH P ) ; 
PUT SKIP EDIT('^ ' ,NAME)(C0L(4) ,A); 
PUT SKIP(2) EDITCHEAT=',HEAT,'SUBCOOL=',SUBCOOL, 

'AREA=',AREA,'TTD=',TTD,'DCTD=',DCTD,'HDP=',HDP) 
( C O L ( 1 0 ) , A , E ( I 2 , 5 ) ) 
CCDP = ' , C D P ) ( C O L ( 1 0 ) , A , 3 E d 3 , 5 ) ) 
( 'AREAS=' ,A)(GOL(10) ,A,3 E ( 1 3 , 5 ) ) 
( 'HEATS=' ,Q)(COL(10) ,A,3 E d 3 , 5 ) ) 
CUS = ' , U ) ( C O L ( 1 0 ) , A , 3 E ( 1 3 , 5 ) ) 
('LMTDS=',LMTD)(COL(10),A,3 E ( 1 3 , 5 ) ) 
('HTEMP=',HTEMP)(COL(10),A,4 E ( 1 3 , 5 ) ) 
('CTEMP=',CTEMP)(COL(10),A,4 E ( 1 3 , 5 ) ) ; 

END FHH; 



44 

A.7 FLASH-TANK MODEL 

A.7.1 Description of Model 

This model (FLSH) represents a flash tank in which the entering flow is 
isenthalpically expanded through a given pressure drop. The model requires two flows: 
The first represents the incoming fluid (on input) or the vapor phase of the flash (on 
output); the second flow (an output flow) represents the liquid phase of the flash. 

The parameters of the FLSH model are as follows: 

PRES DROP — Specified pressure drop through the device. 

QUAL — Calculated quality of the input flow. 

A.7.2 Declaration Structure 

*- PROCESS NAMECFLSHC'); 
FLSHC: PROC( FLSHP, STM1_P, STM2_P); 

DCL (FLSH_P, STM1_P, STM2_P) POINTER; 
DCL 1 FLSH BASED(FLSH_P), 

2 NAME CHARde), 
2 FLCl, 
3 FNAME CHARde), 
3 ID CHARde) VARYING, 
3 AT0M(8) FLOATde), 
3 PROP, 
4 (TEMP,PRES,ENTH,ENTP,QUAL,RHO,VEL,MASS) FLOAT(ie), 

3 COMP, 
4 (XAR,XCH4,XCO,XC02,XH,XH2,XH20,XH2S,XK,XKOH,XNO,XN2, 
XO,XOH,X02,XS02,XHCL,XCH30H,XC,XCOS,XNH3,XS,XCL) FLOATde), 

3 SOL, 
4 WTF FLOATde), 

2 FLC2, 
3 FNAME CHARde), 
3 ID CHARde) VARYING, 
3 AT0M(8) FLOATde), 
3 PROP, 
4 (TEMP,PRES,ENTH,ENTP,QUAL,RHO,VEL,MASS) FL0ATd6), 

3 COMP, 
4 (XAR,XCH4,XCO,XC02,XH,XH2,XH20,XH2S,XK,XKOH,XNO,XN2, 
XO,XOH,X02,XS02,XHCL,XCH30H,XC,XCOS,XNH3,XS,XCL) FL0AT(16), 

3 SOL, 
4 WTF FLOATde), 

2 PARM, 
3 PRES_DROP FLOATde), 
3 QUAL FLOATde); 

DCL STMl BASED(STM1_P) LIKE FLCl; 
DCL STM2 BASED(STM2 P) LIKE FLC2; 



45 

DCL (ENTH_ST, ENTH_LIQ, Q, PC) FL0AT(16), 
TNAME CHARde), 
(GPSAT,GP) ENTRY; 

Save the inlet flow in FLCl . 

FLC1=STM1; 

Initialize the value of the second (liquid) flow from the flash model as that of the inlet 
flow. In order to avoid losing the name of the flow, as used within the SALT inputs, it is 
temporarily stored in TNAME. 

TNAME=STM2.FNAME; 
STM2=STM1; 
STM2.FNAME=TNAME; 

Set the exit pressures using the specified pressure drop. 

STMl. PRES, STM2. PRES=STM1. PRES-PRES_DROP; 

Calculate the exit saturation enthalpies. 

CALL CPSAT(NAME,STM1,PC,ENTH_LIQ,ENTH_ST); 
IF STMI.PRES<PC THEN 

DO; 

If the exit flow pressure is subcritical, then evaluate the quality of that flow, assuming 
an isenthalpic flash. 

PARM.QUAL=(STM1.ENTH-ENTH_LIQ)/(ENTH_ST-ENTH_LIQ); 

If the flow is subcooled or superheated, generate a fictitious quality to keep both exit 
flows nonzero. This requires that the exit quality of the flash flow be within the two-
phase region for the model to work properly. 

Q=MAX(MIN(0.999,PARM.QUAL),0.001); 

Based on the quality at the exit, split the flow into the vapor and liquid flows. 

STMl.MASS=Q*STM1.MASS; 
STM2.MASS=FLC1.MASS-STMl.MASS; 

Set the two flow enthalpies as the saturation values and call the properties code to 
determine the other flow conditions. 

STMl.ENTH=ENTH_ST; 
STM2.ENTH=ENTH_LIQ; 
CALL GP(NAME,STM2,10B); 
CALL GP(NAME,STMl,lOB); 
FLG1=STM1; 
FLC2=STM2; 

END; 



46 

ELSE 

DO; 

If the exit pressure is supercritical, stop. 
PUT EDIT(FLSH.NAME, ' IS BEING OPERATED ABOVE THE CRITICAL ' , 

' PRESSURE OF ' ,PC) (SKIP,C0L(2) , A,A,A,Ed2 , 5 ) ) ; 
STOP; 

END; 
RETURN; 

FLSHOUT: ENTRY(FLSH_P); 
PUT SKIP EDITC ' ,NAME)(C0L(4),A); 
PUT SKIP(2) EDITCQUALITY = ', PARM. QUAL,' PRES DROP =',PRES_DROP) 
(COLdO),A,Ed2,5)); 

END FLSHC; 

A.8 GAS-TURBINE MODEL 

A.8.1 Description of Model 

The gas-turbine model (GT) requires one pass-through flow of the generic type 
GAS. A simplified off-design mode is also provided. 

In the design mode, the exit flow conditions are calculated by means of an 
isentropic expansion to the specified exit pressure. The exit enthalpy is adjusted using 
the specified isentropic efficiency. A nondimensional mass factor is then calculated for 
use in off-design calculations. 

In the off-design mode, an initial call to GTIN must be made to obtain a table of 
pressure ratios vs. normalized mass factors. This table is used during flow processing to 
obtain the pressure ratio for the calculated normalized mass factor. The exit flow 
conditions are then calculated by an expansion through this pressure ratio with the 
specified isentropic efficiency. 

The parameters of the GT model are as follows: 

DDNAME — Specified character string representing the name of the 
file that contains the off-design pressure-ratio table (needed only in the 
off-design mode). Information contained in this file is in the following 
order: (1) an integer representing the number of pressure-ratio values, 
(2) the list of pressure ratios, and (3) the list of normalized mass 
factors. 

MODE — Specified character string taking the values of "DESIGN" or 
"OFF-DESIGN." 



47 

EFFICIENCY ~ Specified isentropic efficiency of the turbine 
expansion. 

MECH_EFF ~ Specified mechanical efficiency; any thermal energy 
extracted through the turbine expansion is multiplied by this efficiency 
to obtain the useful mechanical-power output. 

EXITPRES — Specified design-point exit pressure (an output from the 
model in the off-design mode). 

MASSFACT ~ Nondimensional mass factor calculated in the design 
mode and input in the off-design mode. 

MFACT — Calculated nondimensional mass factor normalized by 
dividing by the design-point mass factor. 

PRDES — Design-point pressure ratio calculated in the design mode and 
input in the off-design mode. 

PRES RATIO — Calculated pressure ratio across the turbine. 

INIT — A "flag" used by the code to initiate a reevaluation of the 
design-point mass factor on first entry to the model during the off-
design mode. The design-point pressure ratio may not be at the 
maximum pressure ratio specified in the off-design pressure-ratio 
table; therefore, the design-point mass factor is adjusted to reflect 
what it would be at the maximum ratio in the table. 

A.8.2 Declaration Structure 

- PROCESS NAME('GTC'); 
GTC: PROC(GT_P, GAS_P); 

DCL (GT_P, GAS_P) POINTER; 
DCL 1 GT BASED(GT_P), 

2 NAME CHARde), 
2 FLC, 
3 FNAME CHARde), 
3 ID CHARde) VARYING, 
3 AT0M(8) FLOATde), 
3 PROP, 
4 (TEMP,PRES,ENTH,ENTP,QUAL,RHO,VEL,MASS) FL0AT(16), 

3 COMP, 
4 (XAR,XCH4,XCO,XC02,XH,XH2,XH20,XH2S,XK,XKOH,XNO,XN2, 
XO,XOH,X02,XS02,XHCL,XCH30H,XC,XCOS,XNH3,XS,XCL) FLOATde), 

3 SOL, 
4 WTF FLOATde), 

2 PARM, 
3 DDNAME CHAR(7), 



48 

3 MODE CHARdO), 
3 EFFICIENCY FLOATde) , 
3 MECH_EFF FLOATde) , 
3 EXIT_PRES FLOATde) , 
3 MASS_FACT FL0AT(16), 
3 M_FACT FLOATde), 
3 PRDES FLOATde) , 
3 PRES_RATIO FL0AT(16), 
3 INIT B I T ( l ) , 

2 POWER, 
3 (INPUT,PRODUCED,CONSUMED,LOSS) FLOAT(ie), 

2 PRATIO, 
3 PTR POINTER, 

2 COST FLOATde); 
DCL GAS BASED(GAS_P) LIKE FLC; 
DCL (GOV INITd01325.0)) FLOAT(ie), 

SOV ENTRY(FLOAT( 16), FLOATde), FIXED BIN(15 ), FLOATde ), 
FLOATde), FIXED BINd5),FIXED BIN(15 ) ,CHAR(*) ), 

(GP, TABC, TABIN) ENTRY; 

Initialize power to zero and save the inlet flow. 

POWER = O.OEO; 
FLC = GAS; 
IF MODE='DESIGN' THEN 

DO; 

If the model is being run in the design mode, call the procedure GTl to perform the 
calculations of the expansion process. 

CALL GT1(EXIT_PRES,EFFICIENCY); 

Calculate the mass factor to be used in any off-design runs. 

MASS_FACT=FLC.MASS/SQRT(FLC.PRES*COV*FLC.RHO); 

Set the value of M FACT and the pressure ratio across the turbine. (M FACT is really 
only used in the off-design mode; however, it should be initialized, because it is always 
printed out with the other model parameters.) 

M_FACT=1.0; 
PRES_RATIO,PRDES=FLC.PRES/EXIT PRES; 

END; 
ELSE 

DO; 

If the model is in the off-design mode, the exit pressure will be determined from the 
response surface data. However, the turbine may not have been run, during the design-
mode run, at the design point of the response surface. Thus, the mass factor that would 
be printed out during the design-mode run would not correspond to that which would have 
been calculated if the design run had been made at the design-point pressure ratio of the 



49 

response surface. This mass factor is initially adjusted so that the M FACT (from the 
response surface) calculated at conditions similar to the design run will give the pressure 
ratio of the design run. 

IF INIT THEN 
DO; 

M_FACT=1.0; 
DO 1=1 TO 10; 

CALL TABC(PRATIO,M_FACT,PRES_RATIO); 
CALL SOV(M_FACT,PRES_RATIO-PRDES,I,-0.1,lE-5,10,0,'GT'); 

END; 
MASS_FACT=MASS_FACT/M_FACT; 
INIT='0 'B; 

END; 

Calculate the normalized mass factor to be used with the response surface data. 

M_FACT=FLC. MASS / SQRT( FLC. PRES*COV*FLC. RHO ) /MASS_FACT; 

Call the response surface data to obtain the pressure rat io. 

CALL TABC(PRATIO,M_FACT,PRESRATIO); 

Using the pressure ratio, set the exit pressure and then call GTl to perform the actual 
expansion process. 

EXIT_PRES=FLC.PRES/PRES_RATIO; 
CALL GT1(EXIT_PRES,EFFICIENCY); 

END; 

Calculate the power produced. 
% 

POWER.PRODUCED=MECH_EFF*(FLC.ENTH-GAS.ENTH)*GAS.MASS; 
COST = 0 .0 ; 

Save the exit flow. 

FLC = GAS; 
RETURN; 

GTl: PROC(POUT,EFF); 
DCL (P_OUT,EFF) FLOATde); 

Set the gas pressure equal to the exit flow pressure. 

GAS.PRES=P_OUT; 

Call the properties code, with the pressure and entropy as the specified inputs, to 
determine the isentropic-expansion conditions of the flow. 

CALL GP(NAME,GAS,11B); 



so 

Using the isentropic s ta te point and the specified efficiency of the expansion, set the 
exit enthalpy of the flow. 

GAS.ENTH = FLC.ENTH-(FLC.ENTH-GAS.ENTH)* EFFICIENCY; 

Call the properties code, with the pressure and enthalpy specified, to determine the exit 
conditions of the flow. 

CALL GP(NAME,GAS,10B); 
END GTl; 

GTIN: ENTRY(GT_P); 
IF MODE='DESIGN' THEN 
CALL TABIN(PRATIO,DDNAME); 

RETURN; 

GTOUT: ENTRY (GT P); 
PUT SKIP EDITC^ ',NAME)(C0L(4),A); 
PUT SKIP(2) EDITCMODE = ' ,MODE)(COL(10) ,A,A) 

('EXIT PRESSURE = ',EXIT_PRES, 
'EFFICIENCY = '.EFFICIENCY, 
'MECHANICAL EFFICIENCY = ',MECH_EFF, 
'MASS FACTOR = ',MASS_FACT, 
'M FACTOR = ',M_FACT, 
'DESIGN PRESSURE RATIO = ',PRDES, 
'PRESSURE RATIO = ',PRES_RATIO) 
(COL(10),A,Ed2,5)); 

IF M_FACT>1.0 THEN 

PUT SKIP(2) EDITCFLOW IS CHOKED, M_FACT=',M FACT) 
(COL(10),A,E(12,5)); 

END GTC; 

A.9 HEATER MODEL 

A.9.1 Description of Model 

The heater model (HT) requires one pass-through flow of the generic type GAS. 
The parameters of the model are: 

HEAT - Specified heat added to the flow. 

T S E T - Specified exit temperature of the flow if set to a number 
greater than zero. This exit temperature determines the value of 
HEAT; if T SET is set to zero, then HEAT must be put in. 

P R E S D R O P F R A C — Fraction of the input flow pressure used as a 
pressure drop through the heater. 



51 

A.9.2 Declaration Structure 

* PROCESS NAME('HTC'); 
HTC: PROC( HT_P, FLOW_P); 

DCL (HT_P,FLOW_P) POINTER; 
DCL 1 HT BASED(HT_P), 

2 NAME CHARde), 
2 FLC, 
3 FNAME CHARde), 
3 ID CHARde) VARYING, 
3 AT0M(8) FLOATde), 
3 PROP, 
4 (TEMP,PRES,ENTH,ENTP,QUAL,RHO,VEL,MASS) FLOATde), 

3 COMP, 
4 (XAR,XCH4,XCO,XC02,XH,XH2,XH20,XH2S,XK,XKOH,XNO,XN2, 
XO,XOH,X02,XS02,XHCL,XCH30H,XC,XCOS,XNH3,XS,XCL) FLOATde), 

3 SOL, 
4 WTF FLOATde), 

2 PARM, 
3 HEAT FLOATde), 
3 T_SET FLOATde), 
3 PRESDROPFRAC FLOATde), 

2 POWER, 
3 (INPUT,PRODUCED,CONSUMED,LOSS) FL0AT(16); 

DCL FLOW BASED(FLOW_P) LIKE FLC; 
DCL (GP) ENTRY, 

(X) FLOATde); 

Initialize the power to zero and set the exit flow pressure using any prescribed pressure-
drop fraction. 

POWER=0.0; * 
FLOW.PRES=FLOW.PRES*(1.0-PRES_DROP_FRAC); 

Save the inlet enthalpy of the flow for calculating the heat transferred if the T_SET 
parameter is set . 

X=FLOW.ENTH; 
IF T_SET=0.0 THEN 

DO; 

If T_SET is not zero, use this value of the exit temperature to calculate the exit 
enthalpy, and thus the heat transferred. 

FLOW.TEMP=T_SET; 
CALL GP(NAME,FL0W,1B); 
HEAT= ( FLOW. ENTH-X )*FLOW. MASS ; 

END; 

Using the heat transferred, set the exit flow enthalpy. 

FLOW.ENTH=X+HEAT/FLOW.MASS; 



52 

Call the properties code to determine the other s ta te variables of the flow at the exit. 

CALL GP(NAME,FLOW,lOB); 

Since the heat transferred within the HT model does not come from any flow within the 
model, the heat transferred represents additional thermal input (or loss) to the system. 
This heat is added to the POWER substructure. 

IF HEAT>=0.0 THEN 
POWER.INPUT=HEAT; 

ELSE 
POWER.LOSS=-HEAT; 

Save the exit flow. 

FLC=FLOW; 
RETURN; 

HTOUT: ENTRY( HT_P ); 
PUT SKIP EDITC ',NAME)(C0L(4),A); 
PUT SKIP(2) EDITCHEAT = ' ,HEAT)(COLdO) , A, Ed2 ,5 ) ) ; 
END HTC; 

A.10 HEAT-EXCHANGER MODEL 

A. 10.1 Description of Model 

The heat-exchanger model (HX) is set up to process the hot flow in one entry 
(HXH) and the cold flow in another entry (HXC). Both entries require one pass-through 
flow of the generic type GAS. Either entry may be called first. 

The model also includes options for calculating heat-transfer-surface areas using 
specified heat-transfer coefficients. These coefficients can be adjusted as functions of 
mass flow rate or temperature to simulate off-design changes. Thus, the model can be 
run off-design, but the surface areas (as calculated in the code) must be constrained to 
equal their design values outside the model (see CONS, below). 

The parameters of the HX model are as follows; 

MODE — Specified character string taking the values of "DESIGN" or 
"OFF-DESIGN." 

TYPE — Specified character string taking the values "PARALLEL" or 
"COUNTER" to indicate that the heat exchanger is of either a parallel-
flow or counterflow configuration. 

HEAT — Specified heat transfer from the hot to the cold fluid (may be 
overridden if T SET is set). 



53 

HEAT FLUX — Calculated average heat flux in the exchanger. 

T_SET(2) — An array of exi t- temperature values: the first element is 
for the hot flow; the second, for the cold flow. Only one of these 
elements should be assigned a value (their default value is zero), and 
that one must correspond to the entry that is called first. If either 
element is assigned a value, then the heat transferred is calculated 
from the T SET value rather than from the value set in HEAT; T SET 
should be used only if the flow being assigned an exit temperature is 
definitely not in the two-phase region. 

PRES_DROP_FRAC(2) — Specified array of the fraction of input flow 
pressure used as a pressure drop through the device; hot flow, 1, and 
cold flow, 2. 

U — Calculated overall heat-transfer coefficient from the hot to the 
cold fluids. 

AREA — Total heat-transfer area, calculated in the design mode and 
specified in the off-design mode (however, see CONS). 

INTEMP(2) — Storage for the inlet fluid temperatures. 

AVGTEMP(2) — Calculated average temperatures of the hot and cold 
fluids. 

ST(2) — Calculated surface temperatures between the fluids and the 
wall. 

LMTD — Calculated log mean temperature 'difference between the 
fluids. 

UR(3) ~ Specified array of heat-transfer coefficients for hot fluid to 
wall (1), wall to cold fluid (2), and through wall (3). 

UC(2) — Specified array of correction factors for the UR(1) and UR(2) 
values in the off-design mode. If a value of UC exceeds 100, then the 
value of UR is adjusted as UR-(UC/AVGTEMP)^ or else as 
UR-(DM/MASS)^*^, where MASS is the fluid-mass flow rate and DM is 
defined below. These parameters are used only in the off-design mode. 

DM(2) — Specified input values of the design mass flow rates (used only 
in the off-design mode, to correct the heat-transfer coefficients). 

CONS — Calculated off-design parameter representing the difference 
between the calculated and specified surface areas. In the off-design 
mode, this variable must be constrained to equal zero if the model is to 
yield the correct results. 



54 

PINCH POINT — Specified parameter representing the minimum value 
of the MEAN TDIF for which no error message indicating occurrence of 
a pinch-point violation is printed. 

CAL(2) — "Flags" used by the code to indicate when both hot and cold 
entries have been called; these flags indicate when the surface areas 
are to be calculated. 

A.10.2 Declaration Structure 

* PROCESS NAME('HXH'); 
HXH: PROC( HX_P, FLOWP); 

DCL (HX_P,FLOW_P) POINTER; 
DCL 1 HX BASED(HX_P), 

2 NAME CHARde), 
2 FLH, 
3 FNAME CHARde), 
3 ID CHARde) VARYING, 
3 AT0M(8) FLOATde), 
3 PROP, 
4 (TEMP,PRES,ENTH,ENTP,QUAL,RHO,VEL,MASS) FL0ATd6), 

3 COMP, 
4 (XAR,XCH4,XCO,XC02,XH,XH2,XH20,XH2S,XK,XKOH,XNO,XN2, 
XO,XOH,X02,XS02,XHCL,XCH30H,XC,XCOS,XNH3,XS,XCL) FL0AT(16), 

3 SOL, 
4 WTF FLOATde), 

2 FLC, 
3 FNAME CHARde), 
3 ID CHARde) VARYING, 
3 AT0M(8) FLOATde), 
3 PROP, 
4 (TEMP,PRES,ENTH,ENTP,QUAL,RHO,VEL,MASS) FL0AT(16), 

3 COMP, 
4 (XAR,XCH4,XCO,XC02,XH.XH2.XH20.XH2S.XK,XKOH,XNO,XN2, 
XO,XOH.X02.XS02,XHCL.XCH30H.XC.XCOS.XNH3.XS.XGL) FLOATde). 

3 SOL. 
4 WTF FLOATde), 

2 PARM, 
3 MODE CHARdO), 
3 TYPE CHAR(18), 
3 HEAT FLOATde), 
3 HEAT_FLUX FLOATde), 
3 T_SET(2) FLOATde), 
3 PRES_DR0P_FRAC(2) FL0AT(16), 
3 U FLOATde), 
3 AREA FLOATde), 
3 INTEMP(2) FLOATde), 
3 AVGTEMP(2) FLOATde), 
3 ST(2) FLOAT(ie), 
3 LMTD FLOATde), 



55 

3 UR(3) FLOATde), 
3 UC(2) FLOATde), 
3 DM(2) FLOATde), 
3 CONS FLOATde), 
3 PINCH_POINT FLOATde), 
3 FIRST_FLOW FIXED BIN(15), 
3 CAL(2) FIXED BIN(15); 

DCL FLOW BASED(FLOW_P) LIKE FLH; 
DCL (GP) ENTRY, 

(URT(3),X,Y,Z,H1,H2,HMIN) FL0ATd6), 
(I, FLOW_#) FIXED BIN(15); 

If the hot entry has been called, set the flow number to 1 and call HXWK to perform the 
calculations. 

FL0W_#=1; 
CALL HXWK(FL0W_#); 
RETURN; 

HXC: ENTRY( HX_P, FLOW_P); 

If the cold entry has been called, set the flow number to 2 and call HXWK to perform the 
calculations. 

FL0W_#=2; 
CALL HXWK(FL0W_#); 
RETURN; 

HXWK: PROC(FLOW_#); 
DCL FLOW_# FIXED BIN(15); 

Save the inlet value of temperature for later use in calculating the log mean 
temperature. • 

INTEMP( FLOW_#)=FLOW. TEMP; 

If the mode is design, then save the inlet mass flow rate for printout with the model 
outputs. 

IF MODE='DESIGN' THEN 
DM(FLOW_#)=FLOW.MASS; 

Set the exit pressure of the flow using the specified pressure-drop fraction, adjusted by 
the ratio of the actual-to-design mass flow rates squared. (If the mode is design, this 
ratio is equal to 1 and does not affect the pressure drop.) 

FLOW.PRES=FLOW.PRES*(1.0-PRES_DROP_FRAC(FLOW_#)* 
(FLOW.MASS/DM(FLOW_#))**2); 

Temporarily save the inlet flow enthalpy. 

X=FLOW.ENTH; 



S6 

If the T SET value for this flow is not equal to zero, then set the flow's exit temperature 
to this value and calculate the heat transferred in order to reach this temperature. (This 
option can be used only when the flow at the exit is known to be in a single phase.) 

IF T_SET(FLOW_#)=0.0 THEN 
DO; 

FLOW.TEMP=T_SET(FLOW_#); 
CALL GP(NAME,FL0W,1B); 
IF FL0W_#=1 THEN 
HEAT=(X-FLOW.ENTH)*FLOW.MASS; 

ELSE 
HEAT=(FLOW.ENTH-X)*FLOW.MASS; 

END; 

Set the value of CAL for this flow to 1 to indicate that the model has been called for this 
entry. 

CAL(FL0W_#)=1; 

Using the value of HEAT, calculate the exit enthalpy of the flow and call the properties 
code to obtain the other exit flow conditions. 

IF FL0W_#=1 THEN 
FLOW.ENTH=X-HEAT/FLOW.MASS; 

ELSE 
FLOW.ENTH=X+HEAT/FLOW.MASS; 

CALL GP(NAME,FLOW,10B); 

Calculate the average temperature of the f low. 

AVGTEMP(FLOW_#)=0.5*(FLOW.TEMP+INTEMP(FLOW_#)); 

Save the exit f low. 

IF FL0W_#=1 THEN 
FLH=FLOW; 

ELSE 
FLC=FLOW; 

If both CAL(l ) and CAL(2) are equal to 1, then both s ides of the heat exchanger have 
been cal led, and the calculat ion of the log mean temperature and heat - t rans fer - sur face 
areas can be made. 

IF CAL(1)=1 S CAL(2)=1 THEN 
DO; 

Depending on the type of heat exchanger , s e t the d i f f erence b e t w e e n the enter ing and 
leaving flow temperatures in x and y. 

SELECT; 
WHEN(INDEX(TYPE,'PARAL')=0) 



57 

DO; 
X=INTEMP(1)-INTEMP(2); 
Y=FLH.TEMP-FLC.TEMP; 

END; 
WHEN(INDEX(TYPE,'COUNT')=0) 

DO; 
X=INTEMP(1)-FLC.TEMP; 
Y=FLH.TEMP-INTEMP(2); 

END; 
END; 

Using the differences in terminal temperatures, calculate the log mean temperature 
difference. At this point in the calculations, it may be that the temperature profiles 
cross; if so, a fictitious negative log mean temperature difference is calculated for these 
cases. Note the log mean temperature difference is a continuous function of x and y. 

SELECT; 
WHEN(X>0.0 & Y>0.0 & LOG(X/Y)=0.0) 
LMTD=(X-Y)/LOG(X/Y); 

WHEN(X>0.0 & Y>0.0 & LOG(X/Y)=0.0) 
LMTD=X; 

WHEN(Y<=0. & X>=0.) 
LMTD=-SQRT(ABS(Y)); . 

WHEN(X<=0. & Y>=0.) 
LMTD=-SQRT(ABS(X)); 

WHEN(X<0. & Y<0.) 
LMTD=-(x**2+Y**2)**0.25; 

END; 

Call CALU to obtain the heat - t ranfer c o e f f i c i e n t . 

GALL CALU; 

If the mode is des ign, c a l c u l a t e the sur face area; o therwise , c a l c u l a t e the d i f ference 
b e t w e e n the heat flux for the required surface area and that c a l c u l a t e d by the model. 

IF MODE='DESIGN' THEN 
IF LMTD=0. THEN 

AREA=HEAT/(U*LMTD); 
ELSE 

AREA=1E60; 
ELSE 

CONS=HEAT/AREA-U*LMTD; 

Calculate the vEilue of the heat flux and wall t emperatures for printout . 

HEAT_FLUX=HEAT/AREA; 
S T d )=INTEMPd ) - U R d )*U*LMTD; 
ST(2)=ST(1)-UR(3)*U*LMTD; 
IF FL0W_#=1 THEN 

FLOW=FLH; 
ELSE 

FLOW=FLC; 



58 

Reset the values of CAL to 0. 

CAL=0; 
END; 

END HXWK; 
CALU; PROC; 

Calculate the value of the heat-transfer coefficient, either by setting the individual film 
coefficients to those specified (if in the design mode) or by adjusting the specified film 
coefficients using UC. 

IF MODE='DESIGN' THEN 
URT=UR; 

ELSE 
DO; 
URT(3)=UR(3); 
IF UC(1)>100. THEN 

URT(1)=UR(1)*(UC(1)/AVGTEMP(1))**3; 
ELSE 

URT(1)=UR(1)*(DM(1)/FLH.MASS)**UC(1); 
IF UC(2)>100. THEN 

URT(2)=UR(2)*(UC(2)/AVGTEMP(2))**3; 
ELSE 

URT(2)=UR(2)*(DM(2)/FLC.MASS)**UC(2); 
END; 

U=1.0/(URT(1)+URT(2)+URT(3)); 
END CALU; 
HXOUT: ENTRY( HX_P ); 
PUT SKIP EDITC ',NAME)(C0L(4),A); 
PUT SKIP(2) EDITCMODE = ' ,MODE) (COLdO) ,A, A) 

('TYPE = ',TYPE)(COL(10),A,A) 
('DESIGN MASS FLOW RATES = ',DM,' KG/S')(COL(I0),A,2 F(9,2),A) 
('INLET TEMPERATURES = ',INTEMP,' K')(COL(10),A,2 F(8,2),A) 
('AVERAGE TEMPERATURES = ',AVGTEMP,' K')(COL(10),A,2 F(8,2),A) 
{'DESIGN THERMAL RESISTIVITIES = ',UR,' SQ-M K/W') 
(COLdO),A,3 Ed3,4),A); 

IF MODE='DESIGN' THEN 
DO; 
CALL CALU; 
PUT SKIP EDITCTHERMAL RESISTIVITIES = ',URT,' SQ-M K/W') 

(COLdO),A,3 E(13,4),A) 
('RESISTANCE CORRECTIONS = ',UC) 

(COLdO),A,2 Ed3,4)); 
END; 

PUT SKIP EDITCOVERALL HEAT TRANSFER COEF = ' ,U, ' W/SQ-M K') 
(COL(10),A,E(12,5),A) 

CLOG MEAN TEMP DIFFERENCE = ',LMTD,' K') 
(COL(10),A,E(12,5),A) 

CHEAT TRANSFERRED = ',HEAT,' W') 
(COLd0),A,Ed2,5),A) 

CHEAT TRANSFER SURFACE AREA = ' , A R E A , ' S Q - M ' ) 
(COLd0),A,E(12,5) ,A) 

CHEAT FLUX = ' ,HEAT FLUX,'W/SQ-M')(COL(10),A,Ed2,5),A) 



59 

('SURFACE TEMPERATURES = ' , S T , ' K ' ) ( C O L ( 1 0 ) , A , 2 F ( 8 , 2 ) , A ) ; 
IF LMTD<PINGH_POINT THEN 

PUT SKIP EDITC *** PINCH POINT CONSTRAINT VIOLATED') 
( C 0 L ( 4 ) , A ) ; 

END HXH; 

A.11 FLOW-INITIATOR MODEL 

A.11.1 Description of Model 

The flow-initiator model (IN) requires one pass-through flow of the generic type 
GAS. The IN model also has two additional GAS flow-processing entries, INCYCL and 
INCOMP. The INCYCL entry calculates the differences in temperature, pressure, e tc . of 
the flow between this entry and that of the INC entry. This entry is useful in setting up 
recycle loops. 

The INCOMP entry is used to feed back to the INC entry the values of the 
INCOMP entry's GAS flow compositions. By calling this entry with the parameter ITER 
(incremented by one for each call), INCOMP will take its input flow composition and 
assign it to the model's COMP parameter . In this way, a simple fixed-point iteration 
scheme can be set up to converge on gas compositions in recycle loops by sweeping ITER 
from one to some maximum iteration number, calling INC at the beginning of the loop 
and INCOMP at the end of the loop. 

The parameters of the IN model are as follows: 

ID — Specified character-string variable representing the type of 
properties code used in calculating thermodynamic properties of the 
flow. • 

ATOM(8) — Calculated array of atomic-weight fractions of elements of 
the flow, if the ID is set to GAS. 

T ~ Specified temperature of the flow. If T is set to zero, the flow is 
assumed to be a condensible fluid and the saturation temperature is 
used. In this case, the enthalpy of the flow is determined using Q. 

P — Specified pressure of the flow. 

H — Calculated enthalpy of the flow. 

S — Calculated entropy of the flow. 

Q — Specified quality of the flow, used when T is set to zero. Flow 
quality Q may be greater than one (to represent superheating) or less 
than zero (to represent subcooling). 



60 

V ~ Specified velocity of the flow. 

M — Specified mass flow rate of the flow. 

COMP — Specified structure variable defining the molar fractions of 
the separate species that may be used with the GAS properties code. 
The molar fraction of each species is specified as "X," followed by the 
species' chemical formula (e.g., XH2, XC02, XNH3). 

SOL — Structure variable representing the weight fractions of 
entrained solids within the gas flow. At present, SOL has only a single 
scalar (WTF) within its structure. This WTF represents the fraction of 
the flow's mass flow rate that is solid. 

DT, DP, DV. DH, and DM - Calculated differences in T, P. V. H. and M 
between the flow originating from the INC entry and the flow entering 
the INCYCL entry. 

ACC — Termination criterion employed when the INCOMP entry and a 
SALT-defined parameter sweep over ITER are used to close a recycle 
loop over compositions. If the maximum difference in species 
concentrations between the INC and INCOMP entries is less than ACC, 
then ITER is set to 1000. 

ITER — Iteration counter used in the INCOMP entry. 

ITERS — Saved previous value of ITER. 

PRINT — Print switch used in the INCOMP entry. 

A.11.2 Declaration Structure 

* PROCESS N A M E C I N G ' ) ; 
INC: PROC(IN_P,FL0W_P); 

DCL (IN_P, FLOW_P) POINTER; 
DCL 1 IN BASED(IN_P), 

2 NAME CHARde), 
2 FLC, 
3 FNAME CHARde), 
3 ID CHARde) VARYING, 
3 AT0M{8) FLOATde), 
3 PROP, 

4 (TEMP,PRES,ENTH,ENTP,QUAL,RHO,VEL,MASS) FLOAT(ie), 
3 COMP. 

4 (XAR.XCH4,XCO.XC02.XH.XH2,XH20.XH2S.XK.XKOH.XNO,XN2, 
XO,XOH,XO2,XSO2.XHCL,XCH30H,XC,XCOS,XNH3,XS,XCL) FLOATde), 

3 SOL, 



61 

4 WTF F L O A T d e ) , 
2 PARM, 

3 FNAME C H A R d e ) , 
3 ID CHARde) VARYING. 
3 AT0M(8) F L O A T d e ) . 
3 ( T . P , H . S , Q , R , V , M ) FLOAT( i e ) , 
3 COMP, 

4 (XAR,XCH4,XCO,XCO2,XH,XH2,XH2O,XH2S,XK,XK0H,XNO,XN2, 
XO,XOH,X02,XS02,XHCL,XCH30H,XC,XCOS,XNH3,XS,XCL) FL0AT(16) , 

3 SOL, 
4 WTF F L O A T d e ) , 

3 (DT,DP,DV,DH,DM) FLOAT( i e ) , 
3 ACC F L O A T d e ) , 
3 ( ITER,ITERS,PRINT) FIXED B I N d S ) . 

2 POWER. 
3 (INPUT.PRODUCED.CONSUMED.LOSS) F L O A T d e ) ; 

DCL FLOW BASED(FLOW_P) LIKE FLC; 
DCL (GP.GPSAT.GASBW) ENTRY; 
DCL (PC.HL.HS) FLOAT( ie ) ; 
DCL I FIXED B I N ( 1 5 ) ; 

Set POWER to zero. (Note; POWER is only redefined if the CYCL entry is called, in 
which case POWER.INPUT will represent the enthalpy needed to close a loop.) 

POWER=0.0; 

Using the input parameter values, initialize the flow. 

FLOW.PRES=PARM.P; 

FLOW.VEL=PARM.V; 
FLOW.MASS=PARM.M; 
FLOW.ID=PARM.ID; 
FLOW.COMP=PARM.COMP; * 

If the flow ID is that of "GAS," then call GASBW to obtain the kg-atoms/kg array. These 
values are saved in PARM.ATOM, as well as in FLOW.ATOM. 

IF FLOW.ID='GAS' THEN 
CALL GASBW(FLOW.COMP,PARM.ATOM); 

FLOW. ATOM=PARM. ATOM; 
FLOW.SOL=PARM.SOL; 
IF PARM.T=0.0 THEN 
DO; 

If the specified temperature is zero, it is assumed that the flow is one of the condensible 
fluids and GPSAT is called to obtain the saturation values of the enthalpy. These values 
are then used along with the specified flow quality to obtain the enthalpy of the flow. 

CALL GPSAT(NAME,FLOW,PC,HL,HS); 
FLOW.ENTH=HL+PARM.Q*(HS-HL); 



62 

Call the properties code to obtain the exit flow conditions. 

CALL GP(NAME,FLOW,10B); 
END; 

ELSE 
DO; 

If the flow temperature has been set, call the properties code to obtain the flow's 

enthalpy. 

FLOW.TEMP=PARM.T; 
CALL GP(NAME,FL0W,1B); 
PARM.H=FLOW.ENTH; 

END; 

Save the values of the species' molar fractions. These are really used only when the flow 
ID is that of "GAS." The inlet values of the species' molar fractions are redefined at this 
point; thus, PARM.COMP should probably not be used as parameters to be varied to 
establish system constraints. 

PARM.COMP=FLOW.COMP; 
FLC=FLOW; 
RETURN; 

INCYCL: ENTRY(IN_P,FLOW_P); 

Calculate the value of any input power necessary to close the loop. If the loop is closed 
by means of a system constraint, this power should go to zero. 

POWER.INPUT=FLC.MASS*(FLC.ENTH+0.5*FLC.VEL**2)-
FLOW.MASS~-(FLOW.ENTH+0.5-"FLOW.VEL**2); 

Calculate the differences between the flow variables initiated by the model and those 
coming into this CYCL entry. 

DT=FLOW.TEMP-FLC.TEMP; 
DP=FLOW. PRES-FLC. PRES; 
DV=FLOW.VEL-FLC.VEL; 
DH=FLOW.ENTH-FLC.ENTH; 
DM=FLOW.MASS-FLC.MASS; 
RETURN; 

INCOMP: ENTRY(IN_P,FLOW_P); 

INCOMP is an entry that can be used to perform a simple fixed-point iteration on the 
species' molar fractions when a recycle loop is required on gas flows. This is 
accomplished by setting up a SYSBEG/SYSEND SWEEP loop with the IN model at the 
beginning and the INCOMP entry at the end and sweeping over IN.ITER. When the ATOM 
arrays of the initiated and incoming flows are less than IN.ACC, ITER is set to 1000 to 
terminate the sweep. 



63 

IF ITER>ITERS THEN 
DO; 
IF ITER<=1 THEN 
ITERS=0; 

IF PRINT>=1 THEN 
DO; 
PUT SKIP EDITCRECYCL; ',NAME,' N=', PARM. ITER) 
(SKIP,COL(2),A,A,A,F(3),COL(10),A); 

PUT EDITCFLC.ATOM= ',FLC.ATOM,'FLOW.ATOM=',FLOW.ATOM) 
(SKIP,COL(5),A,8 E(12,4)); 

END; 
IF ALL(ABS(FLOW.ATOM-FLC.ATOM)<ACC) THEN 

DO; 
ITER=1000; 
RETURN; 

END; 
PARM.COMP=FLOW.COMP; 

END; 
RETURN; 

INOUT: ENTRYdN P); 
PUT SKIP EDIT("̂  ' ,NAME)(C0L(4),A); 
PUT SKIP(2) EDITClD=',FLC.ID)(COLdO),A,A) 
('TEMP = ',FLC.TEMP,'PRES = ',FLC.PRES,'VEL = ',FLC.VEL, 
'ENTH = ',FLC.ENTH,'MASS = '.FLC.MASS) 
(COL(10),A,Ed2,5)); 

END INC; 

A.12 FUEL-FLOW-INITIATOR MODEL 

% 
A. 12.1 Description of Model 

The fuel-flow-initiator model (INF) requires one pass-through flow of the generic 
type FUEL. The parameters of the INF model are as follows: 

T — Specified temperature of the fuel. 

M — Specified mass flow rate of the fuel. 

HHV — Specified higher heating value of the fuel. 

WEIGHTS — Structure variable representing the fuel composition by 
weight fractions. The WEIGHTS structure includes the following 
variables, where each variable represents the weight fraction of the 
substance in parentheses; C (carbon), H (hydrogen), O (oxygen), N 
(nitrogen), S (sulfur), Cl (chlorine), H20 (water), and ASH (ash). 



64 

A.12.2 Declaration Structure 

* PROCESS NAME( ' INFC') ; 
INFC: PROC(INF_P, F U E L P ) ; 

DCL ( INF_P , FUEL_P) POINTER; 
DCL 1 INF BASED(INF_P), 

2 NAME C H A R d e ) , 
2 PARM, 

3 PROP, 
4 (TEMP,MASS,HHV) FLOAT( ie ) , 

3 WEIGHTS, 
4 (C ,H ,0 ,N ,S ,CL ,H20 .ASH) FL0AT(16) . 

2 POWER, 
3 (INPUT,PRODUCED,CONSUMED,LOSS) FL0AT(16); 

DCL 1 FUEL BASED(FUEL_P), 
2 FNAME CHARde), 
2 PROP, 
3 (TEMP,MASS,HHV) FL0AT(16), 

2 WEIGHTS, 
3 (C,H,0,N,S,CL,H20,ASH) FLOATde); 

Initialize power based on the higher heating value of the fuel. 

POWER=0.0; 
POWER.INPUT=PARM.MASS*PARM.HHV; 

Initialize fuel flow using the specified model inputs. 

FUEL.PROP=PARM.PROP; 
FUEL.WEIGHTS=PARM.WEIGHTS; 
RETURN; 

INFOUT: ENTRY(INF_P); 
PUT SKIP(2) EDITC ',NAME)(C0L(4),A) 
('FUEL HHV=', PARM. HHV,'FUEL MASS=',PARM.MASS)(COLd0) ,A,E(12 ,5 )); 

PUT SKIP(2) EDITCFUEL WEIGHT FRACTIONS')(COL(10) ,A) 
('CARBON','HYDROGEN','OXYGEN','NITROGEN','SULFUR','CHLORINE' , 
'WATER','ASH',PARM.WEIGHTS)(C0Ld5),8 A(10) ,C0Ld3) ,8 F(I0,6)); 

END INFC; 

A.13 MOLTEN-CARBONATE FUEL-CELL MODEL 

A.13.1 Description of Model 

The molten-carbonate fuel-cell model (MCFC) requires two pass-through flows of 
the generic type GAS. The first of these is the anode flow, and the second is the cathode 
flow. 



65 

The parameters of the MCFC model are as follows: 

CELL CURRENT — Specified current through each cell. 

CELL VOLTAGE — Calculated cell voltage. 

CELL TEMP — Specified average temperature of a cell. 

STACK VOLTAGE - Calculated total voltage across the cell stack. 

NO OF CELLS — Specified total number of cells in the stack. 

DELTAVOLT — Specified difference between the Nernst potential at 
the fuel-cell exit and the cell voltage. 

FUEL UTIL — Calculated value of the fuel utilization. 

02 UTIL — Calculated value of the Oj utilization. 

C02 UTIL — Calculated value of the CO2 utilization. 

HF — Calculated value of the overall isothermal heat of reaction. 

E — Calculated Nernst potential at the fuel-cell exit. 

A.13.2 Declaration Structure 

* PROCESS N A M E C M C F C C ' ) ; 
MCFCC: PR0C(MCFC_P,FGAS1_P,FGAS2_P); • 

DCL ( M C F C _ P , F G A S 1 _ P , F G A S 2 _ P ) POINTER; 
DCL 1 MCFC BASED(MCFC_P), 

2 NAME CHARde) , 
2 FLCl, 

3 FNAME CHARde) , 
3 ID CHARde) VARYING, 
3 AT0M(8) FLOAT(ie) , 
3 PROP, 

4 (TEMP,PRES,ENTH,ENTP,QUAL,RHO,VEL,MASS) FL0AT(16), 
3 COMP, 

4 (XAR,XCH4,XCO,XC02,XH,XH2,XH20,XH2S,XK,XKOH.XNO.XN2, 
XO,XOH,X02,XS02,XHCL,XCH30H,XC,XCOS,XNH3,XS,XCL) FLOATde) , 

3 SOL. 
4 WTF FLOATde) , 

2 FLC2, 
3 FNAME CHARde) , 
3 ID CHAR(ie) VARYING, 
3 AT0M(8) FLOATde) , 
3 PROP, 



66 

4 (TEMP.PRES.ENTH.ENTP.QUAL.RHO,VEL,MASS) FLOATde), 
3 COMP, 

4 (XAR,XCH4,XCO,XC02,XH,XH2,XH20,XH2S,XK,XKOH,XNO,XN2, 
XO,XOH,X02,XS02,XHCL,XCU30H,XC,XCOS,XNH3,XS,XCL) F L 0 A T ( 1 6 ) , 

3 SOL, 
4 WTF F L O A T d e ) , 

2 PARM, 
3 CELL_CURRENT FL0AT(16) , 
3 CELL_VOLTAGE FLOATde ) , 
3 STACK_VOLTAGE FLOAT( i e ) , 
3 CELL_TEMP FL0AT(16) , 
3 N0_0F_CELLS FL0AT(16) , 
3 DELTA_V0LT FL0AT(16) , 
3 FUEL_UTIL F L O A T d e ) , 
3 02_UTIL FLOATde ) , 
3 C02_UTIL FLOAT( ie ) , 
3 (HF,E) FLOATde) , 

2 POWER, 
3 (INPUT,PRODUCED,CONSUMED,LOSS) F L O A T d e ) ; 

DCL FGASl BASED(FGAS1_P) LIKE FLCl , 
FGAS2 BASED(FGAS2_P) LIKE FLC2; 

DCL ( Y, C03_M0L, C02_M0L, 02_M0L, H2_M0L, F , H_DEL_TC, MOL_WT, 
H_DEL,TTRY,HAIN,HAIN_TC,HAOUT,HAOUT_TC, 
EO, P_H20_AN, P_C02_AN, P_H2_AN, P_C02_CA, P_02_CA, 
HCIN,HCIN_TC,HCOUT,HCOUT_TC,GROSS_P0WER,CH4_REQ) F L O A T d e ) ; 

DCL (GASBW,GASMR,GP) ENTRY; 
DCL SOV ENTRY(FLOAT(ie),FLOATde),FIXED B I N d 5 ) , F L O A T d e ) , 

F L O A T d e ) , FIXED BIN(15) ,FIXED B I N d 5 ) ,CHAR(*) ) ; 

Perform the anode calculations first: Set Faraday's constant and initialize the 
power to zero. 

F=96487.0; 
POWER=0.0; 

Save the value of the inlet anode flow enthalpy. 

HAIN = FGAS1.ENTH*FGAS1.MASS; 

Set the anode flow temperature to the specified cell temperature and call the properties 
code to obtain the state conditions of the flow at this temperature . 

FGASl.TEMP = CELL_TEMP; 
CALL GP(NAME,FGASl,IB); 

Save the value of the anode flow enthalpy at this cell temperature. 

HAIN_TG = EGASl.ENTH*FGASl.MASS; 

Since the fuel cell only works with the gas flow streams, any entrained-solid flow is 
temporarily subtracted out and saved in the FLCl flow variables. 



67 

FLCl.WTF=FGAS1.WTF*FGAS1.MASS; 
FLCl.MASS=FGAS1.MASS-FLCl.WTF; 

The procedure GASMR will calculate the molar flow rates of the flow, given the mass 
flow rate and the species' molar fractions, if its first argument is 1. These molar flow 
rates are temporarily stored in the FLCl variables. 

CALL GASMRdB, FGASl. COMP, FLCl .MASS, FLCl .COMP ,MOL_WT) ; 

Given the cell current and number of cells, calculate the total number of moles of COo 
and O , that will cross over from the cathode s t ream. These species are then added to 
those already within the anode stream. 

C03_M0L = CELL_CURRENT*NO_OF_CELLS/(2000.0*F); 
C02_M0L = C03_M0L; 
02_M0L = CO3_MOL/2.0; 
FLC1.XC02 = FLC1.XG02+C02_M0L; 
FLC1.X02 = FLC1.X02+02_MOL; 

Calculate the hydrogen concentration within the anode flow. 

H2_M0L = 4.0*FLC1.XCH4+FLC1.XH2+FLG1.XCO; 

Check whether or not there is sufficient hydrogen concentration within the anode flow. 
If not, indicate how much more is needed and terminate . 

IF (H2_M0L < C03_M0L) THEN 
DO; 
CH4_REQ = C03_M0L*1.25/4.0 - FLC1.XH2; 
PUT SKIP(2) EDITC** ERROR IN MCFC:', 

'NOT ENOUGH FUEL IN ANODE INLET STREAM.', 
'INCREASE CH4 FLOW RATE TO ',CH4_aEQ, 
'(MOL/S) OR MORE.') 
(SKIP(2),2 (C0L(4),A,SKIPd)),C0L(4),A, 
E(13,5),X(2),A); 

STOP; 
END; 

Calculate the fuel utilization. 

FUEL_UTIL = C03_MOL/H2_MOL; 

Recall the GASMR procedure, with its first argument set to 2, in order to convert the 
molar flow rates back to species molar fractions and to obtain the total mass flow ra te . 
These values are placed into the FGASl flow variables. 

CALL GASMRdOB,FGASl.COMP,FGASl.MASS,FLCl.COMP,MOL_WT); 

Given the new values of the FGASl composition, call GASBW to obtain the ATOM array. 

CALL GASBW(EGAS 1.COMP,FGAS1.ATOM); 



68 

Add any entrained solids back into the flow and call the properties code to obtain the 

exit flow conditions. 

FGASl.MASS=FGAS1.MASS+FLC1.WTF; 
FGASl.WTF=FLC1.WTF/FGASl.MASS; 
CALL GP(NAME,FGASl,IB); 

Save the exit flow enthalpy from the anode. 

HAOUT_TC = FGASl.ENTH*FGASl.MASS; 

Now perform the cathode calculations: Save the cathode inlet enthalpy. 

HGIN = FGAS2.ENTH*FGAS2.MASS; 

Set the cathode flow temperature to that of the cell temperature . 

FGAS2.TEMP = CELL_TEMP; 

Call the properties code to obtain the state conditions of the cathode flow at the cell 
temperature and save the value of its enthalpy. 

CALL GP(NAME,FGAS2,1B); 
HCINTC = FGAS2.ENTH*FGAS2.MASS; 

Subtract out any entrained solids and call GASMR to obtain the molar flow rates (as was 
done for the anode stream). 

FLC2.WTF=FGAS2.WTF*FGAS2.MASS; 
FLC2.MASS=FGAS2.MASS-FLC2.WTF; 
CALL GASMRdB,FCAS2.COMP,FLC2.MASS,FLC2.COMP,MOL_WT); 

Adjust the species molar rates to reflect the crossover of C O , and O , and calculate the 
CO, and O , utilization rates. 

C02_UTIL = C02_MOL/FLC2.XC02; 
02_UTIL = 02_MOL/FLC2.X02; 
FLC2.XC02 = FLC2.XC02-CO2_M0L; 
FLC2.X02 = FLC2.X02-02_MOL; 

Cheek whether or not there is sufficient COj in the cathode stream. If not, indicate how 
much would be needed and terminate. 

IF (FLC2.XC02 < 0.0) THEN 
DO; 
PUT SKIP(2) EDITC** ERROR IN MCFC:', 

'NOT ENOUGH C02 IN CATHODE INLET STREAM.', 
'INCREASE C02 MOLE RATE TO ',1.25*C02_MOL, 
'(MOL/S) OR MORE') 
(SKIP(2),2 (COL(4),A,SKIP(l)),COL(4),A,E(13,5), 
X(2),A); 



69 

STOP; 
END; 

Check whether or not there is sufficient O2 in the stream. If not, indicate how much 
would be needed and terminate. 

IF (FLC2.X02 < 0.0) THEN 
DO; 
PUT SKIP(2) EDITC** ERROR IN MCFC:', 

'NOT ENOUGH 02 IN CATHODE INLET STREAM.', 
'INCREASE 02 MOLE RATE TO ',1.25*02_MOL, 
'(MOL/S) OR MORE') 
(SKIP(2),2 (COL(4),A,SKIP(l)),COL(4),A,E(13,5), 
X(2),A); 

STOP; 
END; 

Reconvert back to molar fractions, set the new ATOM array values, add the subtracted 
entrained solids, and call the properties code. 

CALL GASMRdOB,FGAS2.COMP,FGAS2.MASS,FLG2.COMP,MOL_WT); 
CALL GAS BW(FGAS 2.COMP,FGAS 2.ATOM); 
FGAS2.MASS=FGAS2.MASS+FLC2.WTF; 
FGAS2.WTF=FLC2.WTF/FGAS2.MASS; 
CALL GP(NAME,FGAS2,1B); 

Save the exit cathode flow enthalpy. 

HCOUTTC = FGAS2.ENTH*FGAS2.MASS; 

Finally, perform the energy-balance calculations: Save the total enthalpy change 
across the cell (at the cell temperature) . ' 

H_DEL_TC=HAOUT_TC-HAIN_TC+HCOUT_TC-HCIN_TC; 
HF=-H_DEL_TC; 

The actual exit temperature of the cell will be determined by varying the exit 
temperature until the total enthalpy change across the cell stack represents the gross 
power produced by the cell. The first try at the exit temperature is taken as that of the 
cell temperature. Thereafter, exit temperature is controlled by the one-dimensional 
equation solver, SOV. 

TTRY=CELL_TEMP; 
DO 1=1 TO 25; 

Set the anode exit temperature and call the properties code to obtain the exit enthalpy. 

FGASl.TEMP = TTRY; 
CALL GP(NAME,FGASl,IB); 
HAOUT = FGASl. ENTH*FGAS1.MASS; 



70 

Set the cathode exit temperature and call the properties code to obtain the exit 
enthalpy. 

FGAS2.TEMP = TTRY; 
CALL GP(NAME,FGAS2,1B); 
HCOUT = FGAS2.ENTH*FGAS2.MASS; 

Calculate the total enthalpy change across the cell. 

H_DEL=HAOUT-HAIN+HCOUT-HCIN; 

The gross power output from the cell depends on the stack voltage, and hence, on the cell 
voltage. The cell voltage is taken as the Nernst potential minus some specified voltage 
drop, DELTAVOLT. The Nernst potential is a function of the partial pressures of the 
species at the exit of the anode and cathode streams. These are calculated first, 
followed by the Nernst potential, cell voltage, and stack voltage, and then by the gross 
power output. 

P_H20_AN = FGASl.XH20*FGAS1.PRES; 
P_C02_AN = FGASl.XC02*FGASl.PRES; 
P_H2_AN = FGASl.XH2*FGASl.PRES; 
P_C02_CA = FGAS2.XC02*FGAS2.PRES; 
P_02_CA = FGAS2.X02*FGAS2.PRES; 
EO = -46.005 + 0.01305*(FGAS1.TEMP - 1000.0); 
EO = -E0*0.0216816; 
E = E0+4.308E-05*(LOG(P_H2_AN/(P_H2O_AN*P_CO2_AN)) 

*FGAS1.TEMP+LOG(P_CO2_CA*P_O2_CA**0.5)*FGAS2.TEMP); 
CELL_VOLTAGE = E-DELTA_VOLT; 
STACK_VOLTAGE= CELL_VOLTAGE*NO_OF_CELLS; 
GROSS_POWER=STACK_VOLTAGE*CELL_CURRENT; 

The difference in enthalpy change and gross power is saved in the variable Y, and the 
equation solver is called to obtain a new estimate of TTRY, the exit temperature. 

Y=-H_DEL-GROSS_POWER; 
CALL SOV(TTRY,Y,I.5.0.0.1.30,0,'MCFC ' ) ; 

END; 

The power produced is saved for printout. The exit flow conditions are saved. 

POWER.PRODUCED=GROSS POWER; 
FLC1=FGAS1; 
FLC2=FGAS2; 
RETURN; 

MCFCOUT: ENTRY(MCFC_P); 
PUT SKIP EDITC ',NAME)(C0L(4),A); 
PUT SKIP(2) EDIT 

('CELL TEMP=',CELL_TEMP,' K') 
(SKIP(2),COL(10),A,Ed2,5),A) 
('CELL CURRENT =',CELL_CURRENT, 

• A') (COLdO),A,E(12,5),A) 



71 

( 'CELL VOLTAGE=',CELL_VOLTAGE, 
' V ) ( C O L d O ) , A , F ( 1 4 , 2 ) , A ) 

COVERALL ISOTHERMAL HEAT OF REAGTION=',HF, 
' W') ( C O L d O ) , A , E d 2 , 5 ) , A ) 

( 'CELL GROSS POWER=',POWER.PRODUCED,' W') 
( C O L ( 1 0 ) , A , E ( 1 2 , 5 ) , A ) 
('NERNST POTENTIAL AT FUEL CELL E X I T = ' , E , ' V ' ) 
( C O L ( 1 0 ) , A , E ( 1 2 , 5 ) , A ) 
( 'FUEL UTILIZATION=',FUEL_UTIL) 
( S K I P ( 2 ) , C O L ( 1 0 ) , A , E ( 1 2 , 5 ) ) 
('OXYGEN UTILIZATION=' .02_UTIL) 
( C O L d O ) . A , E ( 1 2 , 5 ) ) 
('CARBON DIOXIDE UTILIZATION=',C02_UTIL) 
( C O L ( 1 0 ) , A , E ( 1 2 , 5 ) ) ; 

END MCFCC; 

A.14 LIQUID-METAL DIFFUSER MODEL 

A. 14.1 Description of Model 

The liquid-metal diffuser model (MDIF) requires one pass-through flow of the 
generic type LIQ. The parameters of the MDIF model are as follows: 

EXIT VELOCITY - Specified exit flow velocity. 

EFFICIENCY — Specified efficiency of the diffuser (defined as diffuser 
pressure rise divided by change in velocity heads). 

LENGTH — Length of the diffuser, used in calculating pressure changes 
due to gravitational effects on the liquid mass. (This pressure change is 
added to that due to the diffuser efficiency.) 

GRAVANGLE — Angle that the diffuser makes with respect to the 
gravitational field (in degrees). At GRAV_ANGLE = 90, no gravita­
tional effects are present. 

A.14.2 Declaration Structure 

* PROCESS N A M E C M D I F C ' ) ; 

MDIFC: PROC( MDIF_P, LIQ_P ) ; 

DCL (MDIF_P, LIQ_P) POINTER; 
DCL 1 MDIF BASED(MDIF_P), 

2 NAME C H A R d e ) , 
2 FLC, 

3 FNAME C H A R d e ) , 
3 ID CHARde) VARYING. 



72 

3 AT0M(8) FLOAT(ie), 
3 PROP, 

4 (TEMP,PRES,ENTH,ENTP,QUAL.RHO,VEL,MASS) FL0AT(16) , 
3 COMP, 

4 (XAR,XCH4,XC0,XCO2,XH,XH2,XH20,XH2S,XK,XKOH,XNO,XN2, 
XO,X0H,XO2,XSO2,XHCL,XCH30H,XC,XC0S,XNH3,XS,XCL) FLOATde) . 

3 SOL, 
4 WTF FLOATde) , 

2 PARM, 
3 EXIT_VELOCITY FLOATde) , 
3 EFFICIENCY FLOAT(ie), 
3 LENGTH FLOATde) , 
3 GRAV_ANGLE FL0AT(16); 

DCL GP ENTRY; 
DCL LIQ BASED(LIQ_P) LIKE FLC; 

Save the inlet flow and set the specified exit velocity. 

FLC=LIQ; 
FLC.VEL =PARM.EXIT_VELOCITY; 

On the basis of the change in velocity and the change in elevation of the diffuser's inlet 
and exit positions, calculate the exit enthalpy from the diffuser. 

FLC. ENTH =LIQ. ENTH+9.80e65*LENGTH*COSD{GRAV_ANCLE) 
+0.5*(LIQ.VEL**2-FLC.VEL**2); 

On the basis of the specified efficiency and any additional pressure change due to the 
fluid weight, calculate the exit pressure from the diffuser. 

FLC.PRES =LIQ.PRES +0.5*LIQ.RHO/101325.*PARM.EFFICIENCY 
*(LIQ.VEL**2-FLC.VEL**2) 
+9.80665*LENGTH*COSD(GRAV_ANGLE)*LIQ.RHO/101325.; 

Call the properties code, with pressure and enthalpy as inputs, to determine the other 
state variables of the exit flow. 

CALL GP(NAME,FLC,10B); 

Save the exit flow. 

LIQ = FLC; 
RETURN; 

MDIFOUT :ENTRY( MDIF_P ) ; 
PUT SKIP E D I T C ' , N A M E ) ( C 0 L ( 4 ) , A ) 

( ' E f f i c i e n c y =',PARM.EFFICIENCY, 
'LENGTH =',LENGTH, 'CRAV ANGLE ='.GRAV_ANGLE) 
( C O L d 0 ) . A . E ( I 2 . 5 ) ) ; 

END MDIFC; 



73 

A.15 MAGNETOHYDRODYNAMIC-GENERATOR MODEL 

A.lS.l Description of Model 

The magnetohydrodynamic-generator model (MG) simulates an MHD channel. 
The model has two entry points — MGH. used to model the hot gas flow through the 
channel, and MGC, used to model the coolant flow through the channel. The MGH entry 
must be called before the MGC entry. Both entries require flows of the generic type 
GAS. 

The parameters of the MG model are as follows: 

AREA INLET — Calculated inlet flow area of the gas flow. 

AREA OUTLET — Calculated outlet flow area of the gas flow. 

B FIELD — Specified value of the magnetic field. 

CONDUCTIVITY — Calculated value of the electrical conductivity of 
the gas flow at the channel exit. 

DELTA LENGTH — Specified length increment along the length of the 
channel. Calculations along the channel are performed at discrete 
locations, DELTA LENGTH apart . 

EXITPRES — Specified value of the cutoff pressure. Calculations 
along the channel terminate when the calculated pressure becomes less 
than this value. (Actual exit pressure will not necessarily attain this 
specified EXIT PRES value.) 

FARADAY CURRENT — Calculated value of the Faraday current. 

FARADAY FIELD — Calculated value of the Faraday electric field. 

FLOWRATIO — Calculated ratio of the channel length to the channel 
height at the exit. 

FRACTIONHEATLOSS - Calculated ratio of the heat lost to the 
coolant flow to the power produced by the channel. 

FRACTION PRES LOSS — Calculated ratio of the pressure drop along 
the channel to the inlet pressure for the gas flow. 

FRICTIONCOEF — Specified value of the friction coefficient (used in 
calculating the pressure drop along the channel). 

HALL FIELD — Calculated value of the Hall field. 



74 

HALL_PARAMETER - Calculated value of the maximum Hall 
parameter at the channel inlet or exit. 

INVERTER EFF — Specified efficiency of the electrical inverter. 

LENGTH — Calculated length of the channel (a multiple of DELTA_ 
LENGTH). 

LOAD FACTOR — Specified value of the load factor along the channel. 

M A C H N O I N L E T — Calculated value of the inlet-gas-flow Mach 
number. 

M A C H N O O U T L E T - Calculated value of the exit-gas-flow Mach 
number. 

POWER DENSITY — Calculated value of the power density within the 
channel. 

STANTONNO — Specified value of the Stanton number (used in 
calculating gas-side convective heat loss to the coolant flow). 

WALLTEMP — Specified wall-temperature value (used in calculating 
heat loss to the coolant flow). This temperature is specified rather 
than calculated; it should be between the coolant and gas-flow 
temperatures. 

EXTRACTED — Calculated value of the enthalpy extracted from the 
gas flow. 

ABSORBED — Calculated value of the enthalpy absorbed by the coolant 
flow. 

A.15.2 Declaration Structure 

* PROCESS NAME('MGH'); 
MGH: PROC(MG_P, GAS_P); 

DCL (MG_P, GAS_P, STMP) POINTER; 
DCL 1 MG BASED(MG_P). 

2 NAME CHARde). 
2 FLH, 
3 FNAME CHARde), 
3 ID CHARde) VARYING, 
3 AT0M(8) FLOATde), 
3 PROP, 

4 (TEMP,PRES,ENTH,ENTP,QUAL,RHO,VEL,MASS) FLOATde), 
3 COMP, 



75 

4 (XAR,XCH4.XCO,XC02,XH.XH2.XH20.XH2S,XK.XKOH.XNO.XN2. 
XO.XOH.X02.XS02,XHCL,XCH30H,XC,XCOS,XNH3.XS,XCL) FL0AT(16). 

3 SOL. 
4 WTF FLOATde), 

2 FLC, 
3 FNAME CHARde), 
3 ID CHAR(ie) VARYING, 
3 AT0M(8) FLOATde), 
3 PROP. 
4 (TEMP,PRES.ENTH,ENTP,QUAL,RHO,VEL,MASS) FL0AT(16), 

3 COMP. 
4 (XAR,XCH4.XCO.XC02.XH.XH2.XH20.XH2S.XK.XKOH.XNO.XN2. 
XO.XOH,X02.XS02,XHCL.XCH30H.XC,XCOS,XNH3,XS,XCL) FLOATde), 

3 SOL, 
4 WTF FLOATde) , 

2 PARM, 
3 AREA_INLET FLOATde) , 
3 AREA_OUTLET FLOATde) , 
3 B_FIELD FLOATde) , 
3 CONDUCTIVITY FLOATde) , 
3 DELTA_LENGTH FLOAT(ie) , 
3 EXIT_PRES FLOATde) , 
3 FARADAY_CURRENT FLOATde) , 
3 FARADAY_FIELD FL0AT(16) , 
3 FLOW_RATIO FLOATde) , 
3 FRACTION_HEAT_LOSS FLOATde) , 
3 FRACTION_PRES_LOSS FLOATde) , 
3 FRICTION_GOEF FL0AT(16) , 
3 HALL_FIELD FLOATde) , 
3 HALL_PARAMETER FLOATde) , 
3 INVERTER_EFF FLOAT(ie) , 
3 LENGTH FLOATde) , 
3 LOAD_FACTOR F L 0 A T d 6 ) , . 
3 MACH_NO_INLET FLOATde) , 
3 MACH_NO_OUTLET FLOATde) , 
3 POWER_DENSITY FLOATde) , 
3 STANTON_NO FLOATde) , 
3 WALL_TEMP FL0AT(16), 
3 EXTRACTED FL0AT(16) , 
3 ABSORBED FLOATde) , 
3 PRINT FIXED B I N ( 1 5 ) , 

2 POWER, 
3 (INPUT,PRODUCED,CONSUMED,LOSS) FL0AT(16) , 

2 COST, 
3 TOTAL FLOATde); 

DCL GAS BASED(GAS_P) LIKE FLH; 
DCL STM BASED(STM_P) LIKE FLH; 
DCL (SIGMA, SIGMAl, SIGMA2, BETTA, BETTAl, BETTA2, TOLD, POLD, 

HOLD, NMOLE, REJECTED) FLOATde) , 
(DELTA_POWER, DELTA_VOLUME, AVE_TEMP) FLOATde) , 
(PDF, PF, VB, PRES_LOSS, QG, QR, DP, DT) FLOAT(ie) , 
(CP, Q, S, AREA_AVE, SIDE, VOLUME, EQUIV_DIA) F L 0 A T d 6 ) , 
(GAMMAl I N I T ( 1 . 1 2 ) , GAMMA2 I N I T ( 1 . 2 0 ) ) FLOATde) , 
(STEFAN BOLTZMANN I N I T ( 0 . 5 e 7 E - 7 ) ) FLOATde) , 



76 

(EGAS, EWALL INIT(0.65), PI INIT(3.14159)) FLOAT(ie), 
(AREA_IN, AREA_OUT, GOV INIT(101325.0)) FLOAT(ie), 
( I ,J ,N) FIXED BIN(15), 
(GP, GASNM) ENTRY; 

Initialize the power to zero. 

POWER = O.OEO; 

Save the inlet gas flow. 

FLH = GAS; 

Call the properties code to obtain consistent inlet state values and call the electrical 
properties code to obtain the inlet values of the conductivity and Hall parameter. 

CALL GP(NAME,GAS,10B); 
CALL SIGBET(SIGMAl,BETTAl); 

Calculate the inlet Mach number and area and temporarily save the area in AREA IN. 

MACH_NO_INLET=GAS. VEL/SQRT(GAMMA1*C0V*GAS. PRES /GAS. RHO); 
AREA_INLET=GAS.MASS/(GAS.RHO*GAS.VEL); 
AREA_IN=AREA_INLET; 

Initialize the variables that will be incremented along the generator's channel. 

LENGTH=0.0; 
VOLUME=0.0; 
FRACTION_PRES_LOSS=0.0; 
C0NDUCTIVITY=SIGMA1; 

Calculate several variables, used in the equations below, that are only functions of 
variables that do not change along the channel. 

VB=GAS.VEL*B_FIELD; 
PF=(1.0-LOAD_FACTOR)*VB*B_FIELD; 
PDF=L0AD_FACT0R*(1.0-LOAD_FACTOR)*VB**2; 

The channel calculations are performed over an incremental length, DELTA LENGTH, of 
the channel. DT and DP represent estimates of the temperature and pressure change 
across each incremental length. The calculations are performed twice for each length, 
once with the estimated temperature and pressure, and then once again as a corrective 
step. 

DT=25.0*DELTA_LENGTH; 
DP=0.25*DELTA_LENGTH; 

Calculate the maximum number of incremental lengths, such that the channel is not 
longer than 25 m. (The actual number of incremental lengths will be determined when 
the pressure becomes less than EXIT PRES.) 



77 

N= (2 5.0+0.5*DELTA_LENGTH)/DELTA_LENGTH; 

Iterate over the number of channel lengttis. 

DO 1=1 TO N WHILE(GAS.PRES > EXIT_PRES); 

Save the temperature, enthalpy, and pressure entering the incremental length of the 
channel. 

TOLD=GAS.TEMP; 
HOLD=GAS.ENTH; 
POLD=GAS.PRES; 

Set the estimated exit temperature and pressure, based on DT and DP. (DT and DP will 
themselves be brought up to date at the end of each segment's calculations.) 

GAS.PRES=POLD-DP; 
GAS.TEMP=TOLD-DT; 

Force the estimated temperature to be greater than the wall temperature and the 
pressure to be greater than the exit pressure. 

IF GAS.PRES < EXIT_PRES THEN GAS.PRES=EXIT_PRES; 
IF GAS.TEMP < WALL_TEMP THEN GAS.TEMP=WALL_TEMP; 

Call the properties code to determine the other gas flow's state variables at the 
estimated conditions. 

CALL GP(NAME,GAS,1B); 

Perform the predictor and corrector steps. « 

DO J=l TO 2; 

For the corrector step, use the values of the enthalpy and pressure to determine the new 
state conditions of the flow out of the segment. 

IF J=2 THEN 
CALL GP(NAME,GAS,10B); 

Call the electrical properties code and recalculate the electrical conductivity as the 
square root of the segment's inlet and exit conductivity. 

CALL SIGBET(SIGMA2,BETTA2); 
SIGMA=SQRT(SIGMAI*SIGMA2); 

Calculate the segment's power density. 

POWER DENSITY=SIGMA*PDF; 



78 

Calculate the channel geometries and hydraulic diameter. 

AREA_OUT=GAS.MASS/(GAS.VEL---GAS.RHO); 
AREA_AVE=(AREA_IN+SQRT(AREA_IN*AREA_0UT)+AREA_0UT)/3; 
SIDE=SQRT(AREA_AVE); 
EQUIV_DIA=AREA_AVE/(4*SIDE); 

Calculate the pressure drop and decrement the inlet pressure. 

PRES_LOSS=0.5*FRICTION_COEF*(GAS.MASS/AREA_AVE)* 
(GAS.VEL/EQUIV_DIA)*(DELTA_LENGTH/COV); 

GAS.PRES=POLD-PF*SIGMA-DELTA_LENGTH/COV-PRES_LOSS; 

Calculate the incremental power produced. 

DELTA_VOLUME=DELTA_LENGTH*AREA_AVE; 
DELTA_POWER=POWER_DENSITY*DELTA_VOLUME; 

Calculate the average segment temperature and the conductive and radiant temperature 
transfers, QC and QR. 

AVE_TEMP=0.5*(TOLD+GAS.TEMP); 
CP=(HOLD-GAS.ENTH)/(TOLD-GAS.TEMP); 
EGAS=0.5E-4*AVE_TEMP*EQUIV DIA**0.5; 
QC=GAS. MASS*STANTON_NO*CP*rAVE_TEMP-WALL_TEMP) / AREA_AVE; 
QR=STEFAN_BOLTZMANN*EGAS*EWALL*(AVE_TEMP**4-WALL_TEMP**4); 

Calculate the total enthalpy change across the segment and decrement the gas enthalpy. 

EXTRACTED=DELTA_POWER+(QC+QR)*(4*SIDE)*DELTA_LENGTH; 
GAS.ENTH=HOLD-EXTRACTED/GAS.MASS; 

END; 

Bring the values of DT and DP up to date for use in the next segment. 

DT=TOLD-GAS.TEMP; 
DP=POLD-GAS.PRES; 
SIGMA1=SIGMA2; 

Bring the segment inlet area up to date and increment the other variables integrated 
along the channel. 

AREA_IN=AREA_OUT; 
LENGTH=LENGTH+DELTA_LENGTH; 
VOLUME=VOLUME+DELTA_VOLUME; 
POWER.PRODUCED=P0WER.PRODUCED+DELTA_POWER; 
FRACTION_PRES_LOSS=FRACTION_PRES LOSS+PRES LOSS; 

END; 



79 

Set the channel output variables and bring the power variables up to date. 

C0NDUCTIVITY=SQRT(C0NDUCTIVITY*SIGMA2); 
AREA_OUTLET=AREA_OUT; 
EXTRACTED=(FLH.ENTH-GAS.ENTH)*GAS.MASS; 
MACH_NO_OUTLET=GAS.VEL/SQRT(GAMMA2*C0V*GAS.PRES/GAS.RHO); 
HALL_PARAMETER=MAX(BETTAl,BETTA2); 
ABSORBED=EXTRACTED-POWER.PRODUCED; 
REJECTED=POWER.PRODUCED*(1.0-INVERTER_EFF); 
POWER.PRODUCED=POWER.PRODUCED-REJECTED; 
FRACTION_HEAT_LOSS=ABSORBED/POWER.PRODUCED; 
FRACTI0N_PRES_LOSS=FRACTION_PRES_L0SS/FLH.PRES; 
FLOW_RATIO=LENGTH/SIDE; 
BETTA=SQRT(BETTA1*BETTA2); 
FARADAY_FIELD=LOAD_FACTOR*GAS.VEL*B_FIELD; 
FARADAY_CURRENT=CONDUCTIVITY*(GAS.VEL*B_FI ELD-FARADAY_FIELD); 
HALL_FIELD=(BETTA/CONDUCTIVITY)*FARADAY_CURRENT; 
COST.TOTAL =0.0; 

Save the exit gas flow from the channel. 

FLH = GAS; 
RETURN; 

MGC: ENTRY(MG_P,STM_P); 

Using the energy absorbed, as calculated within the gas-side (hot) entry, calculate the 
exit enthalpy of the coolant side and call the properties code to obtain the other state 
variables of the flow. 

STM.ENTH=STM.ENTH+ABSORBED/STM.MASS; 
CALL GP(NAME,STM,10B); 

Save the coolant flow. 

FLG=STM; 
RETURN; 

SIGBET: PROC(SIGMA,BETTA); 
DCL (SIGMA,BETTA,T1,T2,T3,SUM, NMOLE, ELECTRON_C0NCENTRATION, 
ELEGTRON_THERMAL_VELOCITY, POTASSIUM_CONCENTRATION, AVOGADRO 
INIT(e.0228E23), BOLTZMANN INIT(1.38047E-23), ELECTRON_CHARGE 
INIT(1.60203E-19), ELECTRON_MASS INIT(9.llE-31), PERMITTIVITY 
INIT(8.85525E-12), PLANK INIT(6.e242E-34), 
POTASSIUM_IONIZATION_POTENTIAL INIT(4.34)) FL0AT(16); 
ELECTRON_THERMAL_VELOCITY= 
SQRT(8.0*GAS.TEMP/PI*(BOLTZMANN/ELEGTRON_MASS)); 
CALL GASNM(GAS.COMP,NMOLE); 
POTASSIUM_CONCENTRATION=1000*AVOGADRO*GAS.RHO*NMOLE*GAS.XK; 
SUM=1000*AVOGADRO*1E-20*GAS.RHO*NMOLE*( 
GAS.XK*400+GAS.XH2*13.8+GAS.XO2*3+GAS.XO*20+GAS.XN2*6.5+ 
GAS.XH20*75+GAS.XC02*15+GAS.XC0*8); 
ELEGTRON_CONCENTRATI0N=SQRT((POTASSIUM_CONCENTRATION/PLANK)* 
((2*PI*ELEGTR0N MASS*BOLTZMANN*GAS.TEMP)**1.5/PLANK)* 



80 

(EXP(-(ELECTRON_CHARGE*POTASSIUM_IONIZATION_POTENTIAL)/ 

(BOLTZMANN*GAS.TEMP))/PLANK)); 

IF ELECTRON_CONCENTRATION=0.0 THEN 

DO; 
SIGMA,BETTA=0.0; 
RETURN; 

END; 
Tl=(ELECTRON_CONCENTRATION*ELECTRON_CHARGE*ELECTRON_ CHARGE)/( 
ELECTRON_MASS*ELECTRON_THERMAL_VELOCITY); 

T2=((ELECTR0N_CHARGE/BOLTZMANN)*( 
ELECTRON_CHARGE/(8*PI*PERMITTIVITY*GAS.TEMP)))**2; 

T3 = 12--PI*(PERMITTIVITY-"BOLTZMANN*GAS.TEMP/( 

ELECTR0N_CHARGE**2))**1.5/ELECTRON_CONCENTRATION**0.5; 
SIGMA=Tl/(SUM+3.9*ELECTRON_CONCENTRATION*T2*LOG(T3)); 
BETTA=(SIGMA"-B_FIELD)/(ELECTRON_CONCENTRATION*ELECTRON_CHARGE); 

END SIGBET; 

MGOUT: ENTRY(MG_P); 
PUT SKIP EDITC ' ,NAME)(C0L(4),A); 
PUT SKIP(2) EDIT( 

'STANTON NO. = ',STANTON NO, 
'FRICTION COEFFICIENT = "^,FRICTION_COEF, 
'EXIT PRESSURE = ',EXIT_PRES, 
'WALL TEMPERATURE = ',WALL_TEMP, 
'LOAD FACTOR = ',LOAD_FACTOR, 
'FARADAY FIELD = ',FARADAY_FIELD, 
'FARADAY CURRENT = ',FARADAY_CURRENT, 
'HALL FIELD = ',HALL_FIELD, 
'MAGNETIC FIELD INTENSITY = ',B_FIELD, 
'PERCENTAGE HEAT LOSS = ',100*FRACTION_HEAT_LOSS, 
'PERCENTAGE PRESSURE LOSS = ',100*FRACTION_PRES_LOSS, 
'MAXIMUM HALL PARAMETER = ',HALL_PARAMETER, 
'AVERAGE CONDUCTIVITY = ',CONDUCTIVITY, 
'INLET MACH NO. = ',MACH_NO_INLET, 
'OUTLET MACH NO. = ',MACH_NO_OUTLET, 
'POWER DENSITY = ',POWER_DENSITY, 
'FLOW RATIO (L/D) =',FLOW_RATIO, 
'INLET AREA = ',AREA_INLET, 
'OUTLET AREA = ',AREAOUTLET, 
'CHANNEL LENGTH = ',LENGTH) 
(COLd0),A,Ed2,5)); 

END MGH; 

A.16 LIQUID-METAL MAGNETOHYDRODYNAMIC-GENERATOR MODEL 

A. 16.1 Description of Model 

The two-component liquid-metal MHD-generator model (MMHD) requires two 
pass-through flows of the generic types GAS and LIQ. The first flow represents the 
predominant gaseous component of the two-component flow, while the second represents 
the liquid component. 



81 

The parameters of the MMHD model are as follows; 

EFFICIENCY — Specified isentropic expansion efficiency of the 
generator. 

EXIT PRES — Specified exit pressure from the generator. 

SLIP RATIO — Specified ratio of the gas velocity to the liquid velocity 
at the exit of the generator. 

TEMP DIFF — Specified difference between the liquid temperature and 
that of the gas at the exit of the generator. 

LENGTH — Length of the generator (used in calculating the gain or loss 
in energy due to the effects of gravity on the mass of fluid within the 
generator). 

GRAV_ANGLE — Specified angle the generator makes with the 
gravitational field. 

VOIDFRACTION — Calculated void fraction at the exit of the 
generator. 

A. 16.2 Declaration Structure 

* PROCESS NAME('MMHDC'); 
MMHDC: PROC(MMHD_P, GAS_P, LIQ_P); 

DCL (MMHD_P, GAS_P, LIQ_P) POINTER; , 
DCL 1 MMHD BASED(MMHD_P), 

2 NAME CHARde), 
2 FLCl, 
3 FNAME CHARde), 
3 ID CHARde) VARYING. 
3 AT0M(8) FLOATde). 
3 PROP. 
4 (TEMP.PRES,ENTH,ENTP,QUAL.RHO,VEL,MASS) FL0AT(16), 

3 COMP. 
4 (XAR,XCH4,XCO,XC02,XH.XH2.XH20.XH2S,XK.XKOH.XNO.XN2, 

XO,XOH,X02.XS02.XHCL.XCH30H,XC,XCOS,XNH3,XS,XCL) FLOATde), 
3 SOL, 
4 WTF FLOATde), 

2 FLC2, 
3 FNAME CHARde). 
3 ID CHAR(ie) VARYING, 
3 AT0M(8) FLOAT(ie), 
3 PROP. 
4 (TEMP,PRES.ENTH,ENTP.QUAL.RHO,VEL.MASS) FLOAT(ie), 

3 COMP, 



82 

4 (XAR,XCH4,XCO,XC02,XH,XH2,XH20,XH2S,XK,XKOH,XNO,XN2, 
XO,XOH,X02,XS02,XHCL,XCH30H,XC,XCOS,XNH3,XS.XCL) FLOATde). 

3 SOL. 
4 WTF FLOATde). 

2 PARM. 
3 EFFICIENCY FLOATde), 
3 EXIT_PRES FLOATde), 
3 SLIP_RATIO FLOATde), 
3 TEMP_DIFF FLOAT(ie), 
3 LENGTH FL0AT(16), 
3 GRAV_ANGLE FLOATde), 
3 VOID_FRACTION FL0AT(16), 

2 POWER, 
3 (INPUT,PRODUCED,CONSUMED,LOSS) FLOATde); 

DCL (S_TOTAL,H_EXIT,H_AVAILABLE,RESULT) FL0ATd6); 
DCL SOV ENTRY{ FL0AT(16), FLOATde), FIXED BINd5), 
FLOATde), FLOATde), FIXED BIN(15), FIXED BIN(15), CHAR(8)); 

DCL GP ENTRY; 
DCL I FIXED BINd5); 
DCL GAS BASED(GAS_P) LIKE FLCl; 
DCL LIQ BASED(LIQ_P) LIKE FLC2; 

Initialize the power to zero and save the inlet flows. 

POWER=0.0; 
FLC1=GAS; 
FLC2=LIQ; 

Set the exit pressure to the specified value. 

GAS.PRES =PARM.EXIT_PRES; 
LIQ.PRES =PARM.EXIT_PRES; 

The liquid velocity is assumed to be the same as the inlet value; the exit gas velocity is 
then determined using the specified slip ratio. 

GAS.VEL =LIQ.VEL*PARM.SLIP_RATIO; 

The inlet value of the total entropy of the gas and liquid flows is calculated and saved in 
STOTAL. 

S_TOTAL =GAS.MASS*GAS.ENTP+LIQ.MASS*LIQ.ENTP; 

The isentropic expansion to the exit pressure is calculated by iterating over the gas 
enthalpy until the calculated enthalpy of the gas-liquid mixture is equal to its inlet 
value. At each iteration, the gas enthalpy is used in the properties code to evaluate its 
temperature and entropy; the liquid temperature is obtained using the specified liquid-
gas temperature difference. The properties code is called with the liquid to determine 
its entropy, and the total entropy of the gas and liquid can then be found. (This method 
will be valid so long as the liquid does not vaporize (i.e., its properties must be able to be 
determined from its temperature and pressure). 



83 

DO 1=1 TO 21; 
CALL GP(NAME,GAS,10B); 
LIQ.TEMP=GAS.TEMP+PARM.TEMP_DIFF; 
CALL GP(NAME,LIQ,1B); 
RESULT=GAS.MASS*GAS.ENTP+LIQ.MASS*LIQ.ENTP-S_TOTAL; 
CALL SOV(GAS.ENTH,RESULT,I,-1E3,1E-3,21,0,'MMHD1'); 

END; 

At this point, the variables GAS.ENTH and LIQ.ENTH will contain their values at the 
isentropic expansion. Thus, the total enthalpy available to generate power can be 
determined by subtraction of the mixture enthalpy from its inlet value. Using the 
specified efficiency, the exit enthalpy of the mixture is obtained. 

H_AVAILABLE =GAS.MASS*(FLC1.ENTH-GAS.ENTH) 
+LIQ.MASS*(FLC2.ENTH-LIQ.ENTH); 

H_EXIT =FLC1.MASS*FLC1.ENTH+FLC2.MASS*FLC2.ENTH 
-PARM.EFFICIENGY*H_AVAILABLE; 

The exit values of the individual gas and liquid flows can be obtained using a method 
similar to that employed in obtaining the isentropic s ta te point. An iteration is 
performed over the gas enthalpy. With a given value of the gas enthalpy, the gas 
temperature can be obtained, followed by the liquid temperature, the liquid enthalpy, and 
the mixture enthalpy. (This method will be valid only if the liquid properties can be 
obtained as a function of temperature and pressure.) 

DO 1=1 TO 21; 
GALL GP(NAME,GAS,10B); 
LIQ.TEMP=GAS.TEMP+PARM.TEMP_DIFF; 
CALL GP(NAME,LIQ,1B); 
RESULT=GAS.MASS*GAS.ENTH+LIQ.MASS*LIQ.ENTH-H_EXIT; 
CALL SOV(GAS.ENTH,RESULT,I,1E3,1E0,21,0,'MMHD2'); 

END; • 

One can then find the total power produced for the expansion process, as well as for any 
changes in velocity or potential energy across the gravitational field. 

POWER.PRODUCED =PARM.EFFICIENCY*H_AVAILABLE 
+(GAS.MASS+LIQ.MASS)*9.806e5*LENGTH*COSD(GRAV_ANGLE) 
-FLG1.MASS*0.5*(FLC1.VEL**2-GAS.VEL**2); 

The exit void fraction is calculated for printout. 

VOI D_FRACTION=GAS. MASS / ( GAS. MASS+LIQ. MASS*GAS. RHO*GAS. VEL/ 
LIQ.RHO/LIQ.VEL); 

The exit flows are saved. 

FLC1=GAS; 
FLC2=LIQ; 
RETURN; 

MMHDOUT: ENTRY( MMHD P ) ; 



84 

PUT SKIP EDITC ',NAME)(C0L(4),A) 
('Efficiency =',PARM.EFFICIENCY, 
'Power =',POWER.PRODUCED, 'VOID FRAC. =',V0ID_FRACTION, 
'LENGTH =',LENGTH, 'GRAV ANGLE =',GRAV_ANGLE) 

(COL(10),A,E(12,5)); 
END MMHDC; 

A.17 LIQUID-METAL NOZZLE MODEL 

A.17.1 Description of Model 

The liquid-metal nozzle model (MNOZ) requires one pass-through flow of the 
generic type LIQ. The parameters of the MNOZ model are as follows: 

EFFICIENCY — Specified efficiency of the nozzle, defined as the 
change in velocity head divided by the change in pressure across the 
nozzle. 

EXIT VELOCITY — Specified exit velocity from the nozzle. 

LENGTH — Specified length of the nozzle (used in determining 
gravitational effects on the pressure changes across the nozzle due to 
the mass of fluid within the nozzle). 

GRAV_ANGLE — Specified angle that the nozzle makes with the 
gravitational field. 

A.17.2 Declaration Structure 

* PROCESS NAME('MNOZC'); 
MNOZC: PROCEDURE ( MNOZP, LIQ_P ); 

DCL (MNOZ_P, LIQ_P) POINTER; 
DCL 1 MNOZ BASED(MNOZ_P), 

2 NAME CHARde), 
2 FLC, 
3 FNAME CHARde), 
3 ID CHAR(ie) VARYING, 
3 AT0M(8) FLOATde), 
3 PROP, 
4 (TEMP,PRES,ENTH,ENTP,QUAL,RHO,VEL,MASS) FLOATde), 

3 COMP, 
4 (XAR,XCH4,XCO,XC02,XH,XH2,XH20,XH2S,XK,XKOH,XNO,XN2, 
XO,XOH,X02,XS02,XHCL,XCH30H,XC,XCOS,XNH3,XS,XCL) FLOATde), 

3 SOL, 
4 WTF FLOATde), 

2 PARM, 



85 

3 EFFICIENCY FL0AT(16) , 
3 EXIT_VELOCITY FLOATde) , 
3 LENGTH FLOATde) , 
3 GRAV_ANGLE FLOATde); 

DCL LIQ BASED(LIQ_P) LIKE FLC; 
DCL GP ENTRY; 

Save the inlet flow and assign the specified exit velocity. 

FLC=LIQ; 
FLC.VEL =PARM.EXIT_VELOCITY; 

On the basis of the change in velocity and any change in elevation between the inlet and 
exit of the nozzle, adjust the exit enthalpy of the flow. 

FLC.ENTH =LIQ.ENTH+9.80ee5*LENGTH*GOSD(GRAV_ANGLE) 
+0.5*(LIQ.VEL**2-FLC.VEL**2); 

Calculate the exit pressure of the flow, based on the specified efficiency and any 
additional pressure due to the elevation change. 

FLC.PRES=LIQ.PRES-0.5*FLC.RHO*(FLC.VEL**2-LIQ.VEL**2) 
/(PARM.EFFICIENCY*101325.0) 
+9.80e65*LENGTH*COSD(GRAV_ANGLE)*FLC.RHO/101325.; 

Call the properties code, with enthalpy and pressure as inputs, to determine the other 
state variables of the flow. 

CALL GP(NAME,FLC,10B); 

Save the flow. 

LIQ = FLC; 
RETURN; 

MNOZOUT :ENTRY( MNOZ_P ) ; 
PUT SKIP EDITC ' ,NAME)(C0L(4),A) 

('EFFICIENCY =',PARM.EFFICIENCY,'EXIT VELOCITY=',EXIT_VEL0CITY, 
'LENGTH ='.LENGTH, 'GRAV ANGLE =',GRAV_ANGLE) 

( C O L ( 1 0 ) , A , E ( 1 2 , 5 ) ) ; 
END MNOZC; 



86 

A.18 LIQUID-METAL PIPE MODEL 

A.lS.l Description of Model 

Liquid-metal flow through a pipe is modeled by MPIP, which requires one pass-
through flow of the generic type LIQ. The parameters of the MPIP model are as follows: 

FRICFAC — Calculated friction factor of the flow within the pipe, 
established using a simple Reynolds-number correlation. 

Vise — Specified viscosity of the flow within the pipe. 

RE — Calculated Reynolds number of the flow within the pipe. 

FD — Calculated pressure drop per unit length of pipe due to the 
frictional effects of the flow on the pipe. 

FG — Calculated pressure changes per unit length of pipe due to the 
effects of gravity on the mass of fluid within the pipe. 

AREA — Calculated flow area of the pipe, based on the inlet mass flow 
rate , density, and velocity. 

DIAMETER — Calculated pipe diameter, based on the calculated area. 

LENGTH - Specified length of the pipe. 

GRAV ANGLE — Specified angle the pipe makes with the gravitational 
field. 

A.18.2 Declaration Structure 

* PROCESS N A M E C M P I P C ' ) ; 
MPIPC: PROC(MPIP_P,LIQ_P); 

DCL (MPIP_P,LIQ_P) POINTER; 
DCL 1 MPIP BASED(MPIP_P), 

2 NAME CHARde), 
2 FLC, 

3 FNAME CHARde), 
3 ID CHARde) VARYING, 
3 AT0M(8) FLOATde), 
3 PROP, 

4 (TEMP,PRES,ENTH,ENTP,QUAL,RHO,VEL,MASS) FL0ATd6), 
3 COMP, 

4 (XAR,XCH4,XCO,XC02,XH,XH2,XH20,XH2S,XK,XKOH,XNO,XN2, 
XO,XOH,X02,XS02,XHCL,XCH30H,XC,XCOS,XNH3,XS,XCL) FLOATde), 

3 SOL, 



87 

4 WTF FLOATde) , 
2 PARM, 

3 (FRIC_FACT, 
Vise, 
RE, 
FD, 
FG, 
AREA, 
DIAMETER, 
LENGTH, 
GRAV_ANGLE) FLOATde); 

DCL (GP,VISSOLN) ENTRY; 
DCL LIQ BASED(LIQ_P) LIKE FLC; 

Calculate the area and diameter of the pipe. 

AREA=LIQ.MASS/(LIQ.RHO*LIQ.VEL); 
DIAMETER=SQRT(4.0*AREA/3.14159); 

Call the liquid-metal viscosity procedure. 

CALL VISSOLN(LIQ.ID,LIQ.TEMP,Vise); 

With the viscosity known, calculate the Reynolds number, the friction factor (a simple 
laminar-flow relation is used), and the pressure drop per unit length due to frictional 
drag. 

RE=LIQ.RHO*LIQ.VEL*DIAMETER/VISC; 
FRIC_FACT=0.3ie4/RE**0.25; 
FD=FRIC_FACT*LIQ.RHO*LIQ.VEL**2/(2.0*DIAMETER); 

Calculate the pressure change per unit length due to the gravitational head. 

FG=LIQ.RHO*9.80665*COSD(GRAV_ANGLE); 

Adjust the flow's enthalpy and pressure due to the pressure changes and gravitational 
fields. 

LIQ.ENTH=LIQ.ENTH+FG*LENGTH/LIQ.RHO; 
LIQ.PRES=LIQ.PRES-(FD-FG)*LENGTH/101325.; 

Call the properties code, with the pressure and enthalpy as inputs, to obtain the other 
variables of the flow. 

CALL GP(NAME,LIQ,10B); 

Save the exit flow. (Technically, the exit velocity of the flow will have changed due to 
the pressure drop within the constant-area pipe; this change will be small, and it is 
neglected in this model.) 



88 

FLC=LIQ; 
RETURN; 
MPIPOUT: ENTRY(MPIP_P); 
PUT SKIP EDITC ' ,NAME)(C0L{4),A) 
C LENGTH=',LENGTH,'GRAV ANGLE=',GRAV_ANGLE,'AREA=',AREA, 
'DIAMETER=',DIAMETER,'RE=',RE,'FRIG FAC=',FRIC_FACT, 
'FD=',FD,'FG=',FG) 
(COLd0),A,Ed2,5)); 

END MPIPC; 

A.19 FLOW-MIXER MODEL 

A. 19.1 Description of Model 

The flow-mixer model (MX) requires two flows. The first is a pass-through flow, 
representing one of the two input flows and also the output flow. The second flow is the 
second input flow. Both of these flows are of the generic type GAS. 

The model does not require any parameters. 

A. 19.2 Declaration Structure 

* PROCESS N A M E C M X C ' ) ; 
MXC: P R 0 C ( M X _ P , F 1 _ P , F 2 _ P ) ; 

DCL (MX_P,F1_P,F2_P) POINTER; 
DCL 1 MX BASED(MX_P), 

2 NAME CHAR(ie), 
2 FLCl, 
3 FNAME CHARde), 
3 ID CHARde) VARYING, 
3 AT0M(8) FLOAT(ie), 
3 PROP, 
4 (T,P,H,S,Q,R,V,M) FLOAT(ie), 

3 COMP, 
4 (XAR,XCH4,XCO,XC02,XH,XH2,XH20,XH2S,XK,XKOH,XNO,XN2, 
X0,XOH,X02,XSO2,XHCL,XCH3OH,XC,XCOS,XNH3,XS,XCL) FLOATde), 

3 SOL, 
4 WTF FLOATde), 

2 FLC2, 
3 FNAME CHARde), 
3 ID CHARde) VARYING, 
3 AT0M(8) FLOAT(ie), 
3 PROP, 
4 (T,P,H,S,Q.R,V,M) FLOAT(ie), 

3 COMP, 
4 (XAR,XCH4,XCO,XC02,XH,XH2,XH20,XH2S,XK,XKOH,XNO,XN2, 
XO,XOH,X02,XS02,XHCL,XCH30H,XC,XCOS,XNH3,XS,XCL) FLOATde), 

3 SOL, 



89 

4 WTF FLOATde); 
DCL Fl BASED(F1_P) LIKE FLCl, 

F2 BASED(F2_P) LIKE FLC2, 
A_PTR POINTER, 
ARRY(23) FLOATde) BASED(A_PTR) , 

(K_E,N1,N2) FLOATde). 
(GP.GASBW.GASNM) ENTRY; 

The inlet flows are saved in FLCl and FLC2. 

FLC1=F1; 
FLC2=F2; 

If the first flow is a "GAS" and the second is "H20." then the two flows are not using the 
same thermodynamic property calculations. An approximation is made by redefining the 
second flow's enthalpy, using its temperature and assuming that it is all in the 
superheated region before being mixed with the gas. (This is only an approximation; if 
GAS and H20 flows must be mixed, the result should be used with caution.) 

IF F1.ID='GAS' & F2.ID='H20' THEN 
DO; 

F2.ID='GAS'; 
F2.COMP.XH20=1.0; 
CALL GASBW(F2.COMP.F2.ATOM); 
CALL GP(NAME.F2.1B); 

END; 

A similar readjustment of the flow enthalpy is made if a GAS flow that is entirely water 
is mixed with an H20 flow. (This combination should be used with caution.) 

IF F1.ID='H20' S F2.ID='GAS' THEN 
DO; . 

F2.ID='H20' ; 
CALL GP(NAME.F2.1B); 

END; 

When both flows are of type GAS, then the two flows are mixed by combining their 
species' molar flow rates . 

IF F1.ID='GAS' & F2.ID='GAS' THEN 

DO; 

Call GASNM to determine the total number of moles per kilogram of flow. 
CALL GASNM(Fl.COMP,Nl); 
CALL GASNM(F2.COMP,N2); 

Redefine, temporarily, the species' molar-fraction structure to represent the total 
species' molar flow ra tes . 

Fl.G0MP=N1*F1.C0MP*F1.M*(l.0-Fl.WTF); 
F2.COMP=N2*F2.C0MP*F2.M*(1.0-F2.WTF); 



90 

Combine the molar flow rates of the two streams. 

F1.COMP=F1.C0MP+F2.COMP; 

Using an overlay on a dummy array of the Fl.COMP, sum the total number of moles for 
the flow. 

A_PTR=ADDR(F1.C0MP); 
N1=SUM(ARRY); 

Calculate the molar fractions of the flow and call GASBW to obtain the new ATOM 
array for the flow. 

IF N1>0.0 THEN 
F1.C0MP=F1.C0MP/N1; 

ELSE 
F1.COMP=0.0; 

CALL GASBW(F1.COMP,Fl.ATOM); 

Redefine the entrained-solid weight fraction. 

F1.WTF=(F1.WTF*F1.M+F2.WTF*F2.M)/(F1.M+F2.M); 
END; 

Sum the total mass flow for the two flows. 

F1.M=F1.M+F2.M; 

Set the exit pressure of the mixed flows equal to the minimum inlet pressure. (This 
method of defining the exit pressure may cause the pressure to oscillate between two 
values in an uncontrollable manner during iterative loops.) 

F1.P=MIN(F1.P,F2.P); 

Calculate the total kinetic energy of the two flows. Define the exit velocity of the 
combined flows as the velocity that would give this same kinetic energy. 

K_E=0.5*(FLC1.M*FLC1.V*FLC1.V+FLC2.M*FLC2.V*FLC2.V); 
Fl.V=SqRT(2.0*K_E/Fl.M); 

Add the total enthalpy of the two flows together and call the properties code to obtain 
the new exit flow conditions. 

F1.H=(FLC1.M*F1.H+FLC2.M*F2.H)/F1.M; 
CALL GP(NAME,F1,10B); 

Save the exit flow. 

FLC1=F1; • 
RETURN; 



91 

MXOUT; ENTRY(MX_P); 
END MXC; 

A.20 GAS-NOZZLE MODEL 

A.20.1 Description of Model 

The gas-nozzle model (NZ) requires one pass-through flow of the generic type 
GAS. The parameters of the NZ model are as follows; 

EFFICIENCY — Specified efficiency of the nozzle expansion, defined 
as the isentropic pressure drop necessary to accelerate the flow to the 
specified exit velocity, divided by the actual pressure drop. 

EXIT VEL — Specified exit velocity of the gas flow. 

PRINT — Specified print switch; if set to a number greater than zero, 
this switch will print out the iterations within the model used in 
obtaining the isentropic exit pressure. 

A.20.2 Declaration Structure 

* PROCESS N A M E C N Z C ' ) ; 
NZC: PROC(NZ_P, GAS_P); 

DCL (NZ_P, GAS_P) POINTER; 
DCL 1 NZ BASED(NZ_P), 

2 NAME C H A R d e ) , » 
2 FLC, 
3 FNAME CHARde), 
3 ID CHARde) VARYING. 
3 AT0M(8) FLOAT(ie), 
3 PROP. 
4 (TEMP.PRES.ENTH,ENTP,QUAL,RHO,VEL,MASS) FL0AT(16), 

3 COMP. 
4 (XAR.XCH4.XCO.XC02.XH.XH2,XH20,XH2S,XK,XKOH.XNO.XN2, 
XO.XOH,X02.XS02.XHCL,XCH30H,XC,XCOS,XNH3,XS,XCL) FLOATde), 

3 SOL. 
4 WTF FLOATde), 

2 PARM. 
3 EFFICIENCY FL0AT(16), 
3 EXIT_VEL FLOATde), 
3 PRINT FIXED BIN(15), 

2 COST, 
3 TOTAL FLOATde); 

DCL GAS BASED(GAS_P) LIKE FLC, 
(Q. R. S. DIFFERENCE) FL0AT(16), 
I FIXED BINd5), 



92 

SOV ENTRY(FLOAT(ie).FLOATde).FIXED BIN(15 ) .FLOATde ) 
.FLOATde), FIXED BINdS),FIXED BIN(15 ) ,CHAR(*) ) , 

GP ENTRY; 

Save the inlet flow and then calculate the flow's exit enthalpy using conservation of 
energy and the specified exit velocity. 

FLC = GAS; 
FLC.ENTH=GAS. ENTH+0 . 5*GAS . VEL**2-0. 5*EXIT_VEL**2 ; 

Iterate over the exit pressure, keeping the flow's entropy equal to its inlet value until the 
flow's enthalpy is equal to this new exit enthalpy value. Thus, the isentropic pressure is 
obtained. 

DO 1=1 TO 15; 
CALL GP(NAME,GAS,11B); 
DIFFERENCE=FLC.ENTH-GAS.ENTH; 
CALL SOV(GAS.PRES,DIFFERENCE,I,1.0,20.0,15,PRINT,'NZ'); 

END; 

Set the gas flow's exit velocity. 

GAS.VEL=EXIT_VEL; 

Using the specified efficiency and the just-calculated isentropic pressure, calculate the 
actual exit pressure. 

GAS.PRES=FLC.PRES+(GAS.PRES-FLC.PRES)/EFFICIENCY; 

Call the properties code to determine the other s ta te variables of the flow. 

CALL GP(NAME,GAS,10B); 
COST.TOTAL =0.0; 

Save the exit flow. 

FLC = GAS; 
RETURN; 

NZOUT; ENTRY(NZ_P); 

PUT SKIP EDITC ',NAME)(C0L(4),A); 
PUT SKIP(2) EDIT( 

'EFFICIENCY = ',EFFICIENCY, 
'EXIT VELOCITY = ',EXIT_VEL) 
(COL(10),A,E(12,5)); 

END NZC; 



93 

A.21 PHOSPHORIC ACID FUEL-CELL MODEL 

A.21.1 Description of Model 

The phosphoric acid fuel-cell model (PAFC) requires two flows, both of the 
generic type GAS. The first flow represents the anode flow; the second, the cathode 
flow. 

The parameters of the PAFC model are as follows: 

CELL CURRENT — Specified current through each ceU. 

CELL VOLTAGE - Calculated cell voltage. 

CELL TEMP — Specified average temperature of cell. 

STACK VOLTAGE — Calculated total voltage across cell stack. 

NO OF CELLS — Specified total number of cells in stack. 

DELTA VOLT — Specified difference between Nernst potential at fuel-
cell exit and cell voltage. 

FUEL UTIL — Calculated value of fuel utilization. 

02 UTIL — Calculated value of oxygen utilization. 

HF — Calculated value of overall isothermal heat of reaction. 

E ~ Calculated Nernst potential at fuel-cell exit. 

A.21.2 Declaration Structure 

* PROCESS NAMECPAFCC'); 
PAFCC: PROC(PAFC_P,FGAS1_P,FGAS2_P); 

DCL (PAFC_P,FGAS1_P,FGAS2_P) POINTER; 
DCL 1 PAFC BASED(PAFC_P), 

2 NAME CHARde), 
2 FLCl, 
3 FNAME CHARde), 
3 ID CHARde) VARYING, 
3 AT0M(8) FLOATde), 
3 PROP, 
4 (TEMP,PRES,ENTH,ENTP,QUAL,RHO,VEL,MASS) FL0AT(16), 

3 COMP, 
4 (XAR,XCH4,XCO,XC02,XH,XH2,XH20,XH2S,XK,XKOH,XNO,XN2, 
XO,XOH,X02,XS02,XHCL,XCH3OH,XC,XCOS,XNH3,XS,XCL) FLOATde), 



94 

3 SOL, 
4 WTF FLOATde), 

2 FLC2, 
3 FNAME CHARde). 
3 ID CHARde) VARYING. 
3 AT0M(8) FLOAT(ie), 
3 PROP. 
4 (TEMP.PRES.ENTH.ENTP.QUAL,RHO,VEL,MASS) FL0AT(16), 

3 COMP, 
4 (XAR,XCH4,XCO.XC02,XH,XH2,XH20,XH2S.XK.XKOH.XNO,XN2, 
XO,XOH,X02,XS02,XHCL.XCH30H,XC,XCOS,XNH3.XS.XCL) FL0AT(16) , 

3 SOL. 
4 WTF F L O A T d e ) , 

2 PARM. 
3 CELL_CURRENT FL0AT(16) , 
3 CELL_VOLTAGE FL0AT(16) , 
3 STACK_V0LTAGE FL0AT(16) . 
3 CELL_TEMP FLOATde) , 
3 NO_OF_CELLS FLOATde ) , 
3 DELTA_VOLT F L O A T d e ) , 
3 FUEL_UTIL FL0AT(16) , 
3 02_UTIL F L O A T d e ) , 
3 (HF.E) F L O A T ( i e ) . 

2 POWER. 
3 (INPUT.PRODUCED,CONSUMED,LOSS) FLOAT( ie ) ; 

DCL FGASl BASED(FGAS1_P) LIKE FLCl . FGAS2 BASED(FGAS2_P) LIKE FLC2; 
DCL (Y,02_MOL.H2_MOL.H20_MOL.F.H_DEL_TC,MOL_WT, 

H_DEL,TTRY,HAIN,HAIN_TC,HAOUT,HAOUT_TC, 
EO , P_H20_CA,P_H2_AN,P_02_CA,GROSS_POWER, 
HCIN,HCIN_TC,HCOUT,HCOUT_TC,QT) FL0AT(16) ; 

DCL (GASBW,GASMR,GP) ENTRY; 
DCL SOV ENTRY(FLOATde),FLOAT(ie) ,FIXED BIN( 15 ) ,FLOAT(ie) , 

F L O A T d e ) , FIXED BIN(15) ,FIXED B I N d 5 ) ,CHAR(*) ) ; 

Perform the anode calculations: Set Faraday's constant and initialize the power 

to zero. 

F=9e487.0; 
POWER=0.0; 

Save the value of the inlet anode flow enthalpy. 

HAIN = FGASl.ENTH*FGASl.MASS; 

Set the anode flow temperature to the specified cell temperature . Call the properties 

code to obtain the state conditions of the flow at this temperature . 

FGASl.TEMP = CELL_TEMP; 
CALL GP(NAME,FGASl,IB); 

Save the value of the anode flow enthalpy at this cell temperature . 

HAIN TC = FGASl.ENTH*FGAS1.MASS; 



95 

Since the fuel cell only works with the gas flow streams, any entrained-solid flow is 
temporarily subtracted and saved in the FLCl flow variables. 

FLC1.WTF=FGAS1.WTF*FGAS1.MASS; 
FLCl.MASS=FGAS1.MASS-FLCl.WTF; 

The procedure GASMR will calculate the molar flow rates of the flow, given the mass 
flow rate and the species' molar fractions, if its first argument is 1. These molar flow 
rates are temporarily stored in the FLCl variables. 

CALL GASMRdB,FGASl.COMP,FLCl.MASS,FLCl.COMP,MOL_WT); 

Calculate the hydrogen concentration in the anode flow. 

H2_M0L = CELL_CURRENT*NO_OF_CELLS/(2000.0*F); 

Check whether or not there is sufficient hydrogen concentration in the anode flow. If 
not, indicate how much more is needed. 

IF (H2_M0L > FLC1.XH2) THEN 
DO; 

PUT SKIP(2) EDITC** ERROR IN PAFC:', 
'NOT ENOUGH FUEL IN ANODE INLET STREAM.', 
'INCREASE H2 MOLE RATE TO ',H2_M0L*1.01, 
'(MOL/S) OR MORE.') 
(SKIP(2),2 (C0L(4),A,SKIP(1)),C0L(4),A, 

E d 3 , 5 ) , X ( 2 ) , A ) ; 
STOP; 

END; 

Calculate the fuel utilization. 

FUEL_UTIL = H2_M0L/FLC1.XH2; 

Calculate the moles of HjO and O2 that cross the cell and adjust the H2 concentration at 
the anode flow. 

H20_M0L = H2_M0L; 
02_M0L = H2_MOL/2.0; 
FLC1.XH2 = FLC1.XH2 - H2_M0L; 

Recall the GASMR procedure, with its first argument set to 2, to convert the molar flow 
rates back to species' molar fractions and to obtain the total mass flow rate. These 
values are placed into the FGASl flow variables. 

CALL GASMRdOB,FGASl.COMP,FGASl.MASS, FLCl.COMP,MOLWT); 

Given the new values of the FGASl composition, call GASBW to obtain the ATOM array. 

CALL GASBW(FGASl.COMP,FGASl.ATOM); 



96 

Add any entrained solids back to the flow and call the properties code to obtain the exit 
flow conditions. 

FGASl .MASS = FGAS1 .MASS + FLCl .WTF; 
FGASl.WTF=FLC1.WTF/FGASl.MASS; 
CALL GP(NAME,FGASl,IB); 

Save the exit flow enthalpy from the anode. 

HAOUT_TC = FGASl.ENTH*FGASl.MASS; 

Next, perform the cathode calculations: Save the cathode inlet enthalpy. 

HCIN = FGAS2.ENTH*FGAS2.MASS; 

Set the cathode flow temperature to equal the cell temperature . 

FGAS2.TEMP = CELL_TEMP; 

Call the properties code to obtain the s ta te conditions of the cathode flow at the cell 
temperature and save the value of its enthalpy. 

CALL GP(NAME,FGAS2,1B); 
HCIN_TC = FGAS2.ENTH*FGAS2.MASS; 

Subtract any entrained solids and call GASMR to obtain the molar flow rates , as was 
done in the case of the anode stream. 

FLC2 .WTF=FGAS2 .WTF*FGAS2 .MASS; 
FLC2.MASS=FGAS2.MASS-FLC2.WTF; 
CALL GASMR(1B,FGAS2.COMP,FLC2.MASS,FLC2.COMP,MOL_WT); 

Adjust the species' molar rates to reflect the crossover of HjO and O , . 

02_UTIL = 02_MOL/FLC2.X02; 
FLC2.XH20 = FLC2.XH20+H20_MOL; 
FLC2.X02 = FLC2.X02-02_MOL; 

Check whether or not there is sufficient O j with the stream. If not, indicate how much 
would be needed and terminate. 

IF (FLC2.X02 < 0.0) THEN 
DO; 
PUT SKIP(2) EDITC** ERROR IN PAFC:', 

'NOT ENOUGH 02 IN CATHODE INLET STREAM.', 
'INCREASE 02 MOLE RATE TO ' , 1.25*02_MOL, 
'(MOL/S) OR MORE') 
(SKIP(2),2 (COL(4),A,SKIP(l)),COL(4),A,Ed3,5), 
X(2),A); 

STOP; 
END; 



97 

Reconvert back to molar fractions, set the new ATOM array values, add the subtracted 
entrained solids, and call the properties code. 

CALL GASMR(10B,FGAS2.COMP,FGAS2.MASS,FLC2.COMP,MOL_WT); 
CALL GASBW(FGAS2.COMP,FGAS2.ATOM); 
FGAS2.MASS=FGAS2.MASS+FLC2.WTF; 
FGAS2.WTF=FLC2.WTF/FGAS2.MASS; 
CALL GP(NAME,FGAS2,1B); 

Save the exit cathode flow enthalpy. 

HCOUT_TC = FGAS2.ENTH*FGAS2.MASS; 

Finally, perform the energy balance calculations: Save the total enthalpy change 
across the cell (at the cell temperature). 

H_DEL_TC=HAOUT_TC-HAIN_TC+HCOUT_TG-HCIN_TC; 
HF=-H_DEL_TC; 

The actual exit temperature of the cell will be determined by varying the exit 
temperature until the total enthalpy change across the cell stack represents the gross 
power produced by the cell. For the first approximation, the exit temperature is taken 
to equal the cell temperature. Thereafter, the exit temperature is controlled by the one-
dimensional equation solver, SOV. 

TTRY=CELL_TEMP; 
DO 1=1 TO 25; 

Set the anode exit temperature and call the properties code to obtain the exit enthalpy. 

FGASl.TEMP = TTRY; 
CALL GP(NAME,FGASl,IB); * 
HAOUT = FGAS1.ENTH*FGAS1.MASS; 

Set the cathode exit temperature and call the properties code to obtain the exit 
enthalpy. 

FGAS2.TEMP = TTRY; 
CALL GP(NAME,FGAS2,IB); 
HCOUT = FGAS2.ENTH*FGAS2.MASS; 

Calculate the total enthalpy change across the cell. 

H_DEL=HAOUT-HAIN+HCOUT-HCIN; 

The gross power output from the cell depends on the stack voltage, and hence, the cell 
voltage. The cell voltage is taken as the Nernst potential minus some specified voltage 
drop, DELTAVOLT. The Nernst potential is a function of the partial pressures of the 
species at the exits of the anode and cathode streams. These partial pressures are 
calculated first, followed by the Nernst potential, the cell voltage, the stack voltage, and 
the gross power output. 



98 

P_H2_AN = FGASl.XH2*FGASl.PRES; 
P_H20_CA = FGAS2.XH20*FGAS2.PRES; 
P_02_CA = FGAS2.X02*FGAS2.PRES; 
EO = -51.147 + 0.0118984*(FGAS1.TEMP - 600 .0 ) ; 
EO = -E0*0.0216816; 
E = E0+4.308E-05*(LOG(P_H2_AN)*FGAS1.TEMP + 
LOG(P_O2_CA**0.5/P_H2O_CA)*FGAS2.TEMP); 

CELL_VOLTAGE = E-DELTA_VOLT; 
STACK_VOLTAGE= CELL_VOLTAGE*NO_OF_CELLS; 
GROSS POWER=STACK VOLTAGE*CELL CURRENT; 

The difference in enthalpy change and gross power is saved in the variable Y. The 
equation solver is called to obtain a new estimate of TTRY, the exit temperature . 

Y=-H_DEL-GROSS_POWER; 
CALL SOV(TTRY,Y,I,5.0,0.1,25,0, 'PAFC_'); 

END; 

The power produced is saved for printout; the exit flow conditions are saved. 

POWER.PRODUCED=GROSS_POWER; 
FLC1=FGAS1; 
FLC2=FGAS2; 
RETURN; 

PAFCOUT: ENTRY(PAFC_P); 
PUT SKIP EDITC ',NAME)(C0L(4),A); 
PUT SKIP(2) EDIT 
('CELL TEMP=',CELL_TEMP,' K') 
(SKIP(2),COL(10),A,E(12,5),A) 
('CELL CURRENT =',CELL_CURRENT, 
' A') (COL(10),A,E(12,5),A) 
('CELL VOLTAGE=',CELL_VOLTAGE, 
' V ) (COLd0),A,F(14,2),A) 

COVERALL ISOTHERMAL HEAT OF REACTION=',HF, 
' W') (COLd0),A,E(12,5),A) 
('CELL GROSS POWER=',POWER.PRODUCED,' W') 
(COL(10),A,E(12,5),A) 
('NERNST POTENTIAL AT FUEL CELL EXIT=',E,' V ) 
(COL(10),A,E(12,5),A) 
('FUEL UTILIZATION=',FUEL_UTIL) 
(SKIP(2),COL(10),A,E(12,5)) 
('OXYGEN UTILIZATION=',02_UTIL) 
(COLdO),A,Ed2,5)); 

END PAFCC; 



99 

A.22 PUMP MODEL 

A.22.1 Description of Model 

The pump modeled by PUMP handles liquids and requires one pass-through flow 
of the generic type LIQ. Rather than modeling the exact energy changes through the 
pump by iterating over the property procedures, PUMP uses an approximation. It 
calculates the power required as the change in pressure, divided by the density, times the 
efficiency. The exit enthalpy of the flow is obtained by adding this required power to the 
inlet flow enthalpy. 

The parameters of the PUMP model are as follows: 

EXIT PRES — Specified exit pressure of the flow. 

EFFICIENCY — Specified efficiency of the pump compression. 

A.22.2 Declaration Structure 

* PROCESS NAME('PUMPC'); 
PUMPC: PROC( PUMP_P, FLOW_P ) ; 

DCL (PUMP_P, FLOW_P) POINTER; 
DCL 1 PUMP BASED(PUMP_P), 

2 NAME C H A R d e ) , 
2 FLC, 

3 FNAME C H A R d e ) , 
3 ID CHARde) VARYING, 
3 AT0M(8) FLOATde), • 
3 PROP, 
4 (TEMP,PRES,ENTH,ENTP,QUAL,RHO,VEL,MASS) FLOATde), 

3 COMP, 
4 (XAR,XCH4,XCO,XC02,XH,XH2,XH20,XH2S,XK,XKOH,XNO,XN2, 
XO,XOH,X02,XS02,XHCL,XCH30H,XC,XCOS.XNH3.XS,XGL) FLOAT(ie). 

3 SOL, 
4 WTF FLOATde), 

2 PARM, 
3 EXIT_PRES FLOATde). 
3 EFFICIENCY FLOATde), 

2 POWER, 
3 (INPUT,PRODUCED.CONSUMED,LOSS) FL0ATd6), 

2 COST FLOATde); 
DCL FLOW BASED(FLOW_P) LIKE FLC; 
DCL 

(T,S,R,Q) FLOATde), 
GP ENTRY; 

Initialize the power to zero. 

POWER=0.0; 



100 

Calculate the power consumed, using the incompressible-fluid approximation and the 
specified exit pressure and efficiency. 

POWER.CONSUMED=FLOW.MASS* 
1.01325E5*(EXIT_PRES-FLOW.PRES)/(FLOW.RHO*EFFICIENCY); 

Adjust the exit enthalpy to reflect the power consumed. 

FLOW.ENTH=FLOW.ENTH+POWER.CONSUMED/FLOW.MASS; 

Set the flow's exit pressure and call the properties code to obtain the flow's other state 
variables. 

FLOW.PRES=EXIT_PRES; 
CALL GP(NAME.FLOW,10B); 
COST=0.0; 

Save the exit flow. 

FLC = FLOW; 
RETURN; 

PUMPOUT: ENTRY(PUMP_P); 
PUT SKIP EDITC ' .NAME)(C0L(4).A); 
PUT SKIP(2) EDITCEXIT PRESSURE = ' .EXIT_PRES, 

'EFFICIENCY = '.EFFICIENCY) 
(COL(10).A,E(12.5)); 

END PUMPC; 

A.23 PIPE-CALCULATOR MODEL 

A.23.1 Description of Model 

The pipe-calculator (PIC) model is common to all models. 

A.23.2 Declaration Structure 

* PROCESS NAME('PIC'); 
PIC: PROC(PI_P. FLOW_P); 

DCL (PI_P, FLOW_P) POINTER; 
DCL 1 PI BASED(PI_P), 

2 NAME CHARde). 
2 FLC. 
3 FNAME CHARde). 
3 ID CHARde) VARYING, 
3 AT0M(8) FLOAT(ie). 
3 PROP, 



101 

4 (TEMP,PRES,ENTH,ENTP,QUAL,RHO,VEL,MASS) FL0AT(16), 
3 COMP, 
4 (XAR,XCH4,XCO,XC02,XH,XH2,XH20,XH2S,XK,XKOH,XNO,XN2, 
XO,XOH,XO2,XSO2,XHCL,XCH30H,XC,XC0S,XNH3,XS,XCL) FLOATde), 

3 SOL, 
4 WTF FLOATde), 

2 PARM, 
3 MODE CHARdO), 
3 PRES_DROP_FRAC FL0AT(16), 
3 FLOW_FACT FLOAT(ie); 

DCL FLOW BASED(FLOW_P) LIKE FLC; 
DCL (GP) ENTRY; 
FLC=FLOW; 
IF MODE='DESIGN' THEN 
DO; 
FLOW.PRES=FLOW.PRES-PRES_DROP_FRAC*FLOW.PRES; 
FLOW_FACT=( FLC. PRES-FLOW. PRES )*FLC.RHO/FLOW.MASS**2 ; 

END; 
ELSE 
DO; 
PRES_DROP_FRAG=FLOW_FACT*FLOW.MASS**2/(FLC.RHO*FLOW.PRES); 
FLOW.PRES=FLOW.PRES-PRES_DROP_FRAC*FLOW.PRES; 

END; 
CALL GP(NAME,FLOW,10B); 
FLC=FLOW; 
RETURN; 

PIOUT; ENTRY(PI P); 
PUT SKIP EDIT("̂  ' ,NAME)(G0L(4),A); 
PUT SKIP(2) EDITCMODE = ' ,MODE, 

'FRACTIONAL PRESSURE DROP = ',PRES_DROP_FRAC, 
'FLOW FACTOR = ',FLOW_FACT) 
(COLdO),A,A,2 (SKIP,GOLdO),A,E(13,5))^; 

END PIC; 

A.24 STEAM-CONDENSER MODEL 

A.24.1 Description of Model 

Any of the condensible fluids (in addition to steam) may be used with the steam-
condenser model (SC). The model requires only one pass-through flow, representing both 
the input flow and the condensed output flow. This flow is of the generic type STM. The 
energy extracted by the condensing process is saved in the POWER substructure. 

The only parameter of the SC model is EXIT PRES, the specified exit pressure of 
the model. If EXIT PRES is set to zero, then the exit pressure is assumed to be equal to 
the inlet pressure. 



102 

A.24.2 Declaration Structure 

PROCESS NAMECSCC' ); 
sec: PROC( SC_P, STM_P); 

DCL (SC_P, STM_P) POINTER; 
DCL 1 SC BASED(SC_P), 

2 NAME CHARde), 
2 FLC, 
3 FNAME CHARde), 
3 ID CHARde) VARYING, 
3 AT0M(8) FLOATde), 
3 PROP, 
4 (TEMP,PRES,ENTH,ENTP,QUAL,RHO,VEL,MASS) FL0AT(16), 

3 COMP, 
4 (XAR,XCH4,XC0,XC02,XH,XH2,XH2O,XH2S,XK,XKOH,XNO,XN2, 
XO,XOH,X02,XS02,XHCL,XCH30H,XC,XCOS,XNH3,XS,XCL) FLOATde), 

3 SOL, 
4 WTF FLOATde), 

2 PARM, 
3 EXIT_PRES F L O A T d e ) , 

2 POWER, 
3 (INPUT,PRODUCED,CONSUMED,LOSS) FLOAT( ie ) , 

2 COST F L O A T d e ) ; 
DCL STM BASED(STM_P) LIKE FLC; 
DCL (PC, ENTH_LIQ, ENTHSTM, T_SAT) FLOATde ) , 

(GP,GPSAT) ENTRY; 

Set the power to z e r o and s a v e t h e in le t f low. 

POWER=0.0; 
FLC = STM; 

If the specified exit pressure is not zero, set the exit pressure of the flow; if this is not 
done, the exit pressure will be the same as the inlet pressure. 

IF PARM.EXIT_PRES=0.0 THEN 
STM.PRES=PARM.EXIT_PRES; 

Call GPSAT to obtain the saturation enthalpy value. 

CALL GPSAT(NAME,STM,PC,ENTH_LIQ,ENTH_STM); 

Calculate the power loss necessary to bring the flow down to the saturation liquid 
enthalpy level. 

POWER.LOSS = STM.MASS*(STM.ENTH-ENTH_LIQ); 

Set the exit flow enthalpy equal to the saturation value. 

STM.ENTH = ENTH LIQ; 



103 

Call the properties code to obtain the other exit flow conditions. 

CALL GP(NAME,STM,10B); 
COST=0.0; 

Save the exit flow. 

FLC = STM; 
RETURN; 

SCOUT: ENTRY(SG_P); 
PUT SKIP EDITC ' ,NAME)(C0L(4),A); 
PUT SKIP(2) EDITCEXIT PRESSURE = ',EXIT_PRES) 
(COL(10),A,E(12,5)); 

END s e c ; 

A.2S STEAM-DRUM MODEL 

A.25.1 Description of Model 

The steam-drum model (SD) requires two flows, both of the generic type STM. 
The first is a pass-through flow, representing the two-phase input flow and, as an output, 
the downcomer flow. The second flow is an output flow, representing the saturated-
steam flow. The model is a demand-type model; the input flow must be of a specified 
steam quality. 

The parameters of the SD model are as follows: 

QUAL — Specified steam quality of the input floV. 

CONS — Difference between the enthalpy of the incoming flow and 
that required by the specified steam quality. This parameter is 
calculated by the model to aid in obtaining the correct input steam 
quality. Thus, CONS should be constrained to equal zero outside the 
model. 

A.25.2 Declaration Structure 

* PROCESS N A M E C S D G ' ) ; 
SDC: PROC( SD_P, STM1_P, STM2_P); 

DCL (SD_P, STM1_P, STM2_P) POINTER; 
DCL 1 SD BASED(SD_P), 

2 NAME CHAR(ie), 
2 FLCl, 
3 FNAME CHARde), 
3 ID CHARde) VARYING, 



104 

3 AT0M(8) FLOATde), 
3 PROP, 
4 (TEMP,PRES,ENTH,ENTP,QUAL,RHO,VEL,MASS) FL0AT(16), 

3 COMP, 
4 (XAR,XCH4,XCO,XC02,XH,XH2,XH20,XH2S,XK,XKOH,XNO,XN2, 
XO,XOH,X02,XS02,XHCL,XCH 30H,XC,XCOS,XNH 3,XS,XCL) FLOAT(16), 

3 SOL, 
4 WTF FLOATde), 

2 FLC2, 
3 FNAME CHARde), 
3 ID CHARde) VARYING, 
3 AT0M(8) FLOATde), 
3 PROP, 
4 (TEMP,PRES,ENTH,ENTP,QUAL,RHO,VEL,MASS) FLOAT(ie), 

3 COMP, 
4 {XAR,XCH4,XCO,XC02,XH,XH2,XH20,XH2S,XK,XKOH,XNO,XN2, 
XO,XOH,X02,XS02,XHCL,XCH30H,XC,XCOS,XNH3,XS,XCL) FL0ATd6), 

3 SOL, 
4 WTF FLOATde), 

2 PARM, 
3 QUAL FLOATde), 
3 CONS FLOATde), 

2 COST FLOATde); 
DCL STMl BASED(STM1_P) LIKE FLCl; 
DCL STM2 BASED(STM2_P) LIKE FLC2; 
DCL (PC, ENTH_ST, ENTH_LIQ) FLOATde), 
TNAME CHARde), 
(GP,GPSAT) ENTRY; 

Save the incoming flow. 

FLC1=STM1; 

Initialize the second flow to be the same as the first. (The flow name, stored within the 
variable FNAME, should not be set to that of the first flow; it should be left unchanged, 
so it is temporarily saved in TNAME. 

TNAME=STM2. FNAME; 
STM2=STM1; 
STM2.FNAME=TNAME; 

Call the procedure GPSAT to obtain the critical pressure, as well as the saturation liquid 
and vapor enthalpy values. 

CALL GPSAT(NAME,STM1,PC,ENTH_LIQ,ENTH_ST); 

If the pressure of the flow is less than critical, then perform the drum calculations. 

IF STM1.PRES<PC THEN 
DO; 



105 

In order to make sure that both exit flows always have a nonzero mass flow rate , it is 
assumed that the inlet flow has an enthalpy level equivalent to that of the specified inlet 
quality. This difference between the actual inlet enthalpy and that required is evaluated 
and stored in the variable CONS. This variable will need to be constrained to equal zero. 

C0NS=STM1.ENTH-ENTH_LIQ-PARM.QUAL*(ENTH_ST-ENTH_LIQ); 

On the basis of the specified quality, calculate the mass flow rates of the two exit flows. 

STM2.MASS=PARM.QUAL*STM1.MASS; 
STMl.MASS=STM1.MASS-STM2.MASS; 

Set the enthalpies of the exit flows to the saturation liquid and vapor values. 

STM2.ENTH=ENTH_ST; 
STMl.ENTH=ENTH_LIQ; 
STM2.VEL=STM1.VEL; 
STM1.QUAL=0.0; 

Call the properties code to obtain the saturation temperature of the flows. 

CALL GP(NAME,STM2,10B); 
STM1.TEMP=STM2.TEMP; 

Save the exit flows. (Because the properties code was not recalled for the liquid exit 
flow, the density and entropy values are not redefined from their inlet values.) 

FLG1=STM1; 
FLC2=STM2; 

END; 
ELSE 

DO; • 
PUT SKIP EDIT C DRUM BEING CALLED FOR A SUPERCRITICAL FLOW.') 

(C0L(2),A); 
STOP; 

END; 
RETURN; 
SDOUT: ENTRY(SD P); 
PUT SKIP EDIT("̂  ' ,NAME)(C0L(4),A); 
PUT SKIP(2) EDITCQUALITY = ',PARM.QUAL) 

(COL(10),A,E(12,5)); 
END SDC; 

A.26 LIQUID-GAS SEPARATOR MODEL 

A.26.1 Description of Model 

The two-phase, two-component liquid-gas separator model (SEPR) requires two 
pass-through flows and two output flows, all of the generic type GAS. The first pass-



106 

through flow represents the predominant gaseous component, while the second represents 
the liquid component. The first of the output flows represents any gaseous carry-over 
flow that leaves with the liquid pass-through flow. The second output flow represents 
any liquid carry-over that leaves the separator with the gaseous pass-through flow. 

The parameters of the SEPR model are as follows: 

VELOCITY HEAD RATIO — Specified ratio of the square of the liquid 
velocity out of the separator to the square of the liquid velocity into 
the separator (used only when the separator is run in the specified 
efficiency mode). 

PRES_DR0P(2) — Specified array of pressure drops for the gaseous and 
liquid flows through the separator. 

VOL RATIO — Calculated ratio of the volume flow rate for the gas to 
that for the liquid. 

LIQ CO — Specified fraction of the liquid flow carried over with the 
gas flow. 

GASCO — Specified fraction of the gas flow carried over with the 
liquid flow. 

EFFICIENCY - Calculated ratio of the fraction of liquid mass to total 
mass, times the velocity head ratio. 

VAPORCO — Calculated mass of liquid carried over with the gas flow 
due to the vaporization of the liquid. This parameter, calculated when 
VAPORJNC is set to "YES," is used only to indicate how much of the 
liquid vapor is carried over. The actual mass is not combined with the 
exiting gas flow or subtracted from the liquid flow. 

VAPOR_INC — Switch used to indicate whether or not liquid-vapor 
carry-over is to be calculated. 

HEAT REJECTED - Calculated heat that would be lost from the liquid 
if vapor carry-over occurred. 

A.26.2 Declaration Structure 

* PROCESS NAMECSEPRC'); 
SEPRC: PROC(SEPRP,GASP,LIQP,GCO_P,LOOP); 

DCL (SEPR_P,GAS_P,Liq_P,GCO_P,LCO_P) POINTER; 
DCL 1 SEPR BASED(SEPR_P), 

2 NAME CHARde), 
2 FLCl, 



107 

3 FNAME CHARde), 
3 ID CHARde) VARYING, 
3 AT0M(8) FLOAT(ie), 
3 PROP, 
4 (TEMP,PRES,ENTH,ENTP,QUAL,RHO,VEL,MASS) FLOATde), 

3 COMP, 
4 (XAR,XCH4,XCO,XC02,XH,XH2,XH20,XH2S,XK,XKOH,XNO,XN2, 
XO,XOH,X02,XS02,XHCL,XCH30H,XC,XCOS,XNH3,XS,XCL) FLOATde), 

3 SOL, 
4 WTF FLOATde), 

2 FLC2, 
3 FNAME CHARde), 
3 ID CHAR(ie) VARYING, 
3 AT0M(8) FLOATde), 
3 PROP, 
4 (TEMP,PRES,ENTH,ENTP,QUAL,RHO,VEL,MASS) FLOAT(ie), 

3 COMP, 
4 (XAR,XCH4,XCO,XC02,XH,XH2,XH20,XH2S,XK,XKOH,XNO,XN2, 
XO,XOH,X02,XS02,XHCL,XCH30H,XC,XCOS,XNH3,XS,XCL) FLOATde), 

3 SOL, 
4 WTF FLOATde), 

2 FLC3, 
3 FNAME CHARde), 
3 ID CHAR(ie) VARYING, 
3 AT0M(8) FLOATde), 
3 PROP, 
4 (TEMP,PRES,ENTH,ENTP,QUAL,RHO,VEL,MASS) FLOATde), 

3 COMP, 
4 (XAR,XCH4,XCO,XC02,XH,XH2,XH2O,XH2S,XK,XKOH,XNO,XN2, 
XO,XOH,X02,XS02,XHCL,XCH30H,XC,XCOS,XNH3,XS,XCL) FLOATde), 

3 SOL, 
4 WTF FLOATde), 

2 FLC4, , 
3 FNAME CHARde), 
3 ID CHARde) VARYING, 
3 AT0M(8) FLOATde), 
3 PROP, 
4 (TEMP,PRES,ENTH,ENTP,QUAL,RHO,VEL,MASS) FLOAT(ie), 

3 COMP, 
4 (XAR,XCH4,XG0,XCO2,XH,XH2,XH2O,XH2S,XK,XK0H,XNO,XN2, 
XO,XOH,X02,XS02,XHCL,XCH30H,XC,XCOS,XNH3,XS,XCL) FL0AT(16), 

3 SOL, 
4 WTF FLOATde), 

2 PARM, 
3 VELOGITY_HEAD_RATIO FLOATde) , 
3 PRES_DR0P(2) FL0AT(16) , 
3 VOL_RATIO FLOATde) , 
3 LIQ_CO FLOATde) , 
3 EFFICIENCY FL0AT(16) , 
3 GASCO FLOAT(ie) , 
3 VAPOR_INC CHAR(3), 
3 VAPOR_CO FLOATde) , 
3 HEAT_REJECTED FL0AT(16) , 

2 POWER, 



108 

3 (INPUT,PRODUCED,CONSUMED,LOSS) FLOAT(ie); 
DCL GAS BASED(GAS_P) LIKE FLCl; 
DCL LIQ BASED(LIQ_P) LIKE FLC2; 
DCL GCO BASED(GCO_P) LIKE FLC3; 
DCL LCO BASED(LCO_P) LIKE FLC4; 
DCL (GP,VPS0LN,HFGS0LN,VISS0LN,0PT1) ENTRY; 
DCL TNAME CHAR(16); 
DCL (MW_VAP0R,MW_GAS,P_VAP0R,HFG_VAPOR) FLOAT(ie); 
DCL (SQRT) BUILTIN; 

Assume GAS.QUAL = 1.0 and LIQ.QUAL = 0.0: Save the inlet flows. 

FLC1=GAS; 
FLC2=LIQ; 

Initialize the power to zero. 

POWER=0.0; 

Redefine the exit pressures based on any specified pressure drops. 

GAS.PRES=FLC1.PRES - PARM.PRES_DR0P(1); 
LIQ.PRES=FLC2.PRES - PARM.PRES_DR0P(2); 

Set the exit velocity of the liquid flow, based on the specified velocity-head ratio. 

LIQ.VEL=FLC2.VEL*SQRT(PARM.VEL0CITY_HEAD_RATI0); 

Set the exit velocity of the gas equal to that of the liquid. 

GAS.VEL=LIQ.VEL; 

Maintaining conservation of energy, calculate the exit enthalpies of the gas and liquid 
flows. 

GAS.ENTH=FLC1.ENTH + 0.5*(FLC1.VEL**2 - GAS.VEL**2); 
LIQ.ENTH=FLC2.ENTH + 0.5*(FLC2.VEL**2 - LIQ.VEL**2); 

Call the properties code for both flows to determine the other s ta te variables of the 
flows. 

CALL GP(NAME,GAS,10B); 
CALL GP(NAME,LIQ,10B); 

Initialize the state conditions of the carry-over flows. (The flow's name should not be 
disturbed in this initialization, so it is temporarily saved in TNAME.) 

TNAME=LCO.FNAME; 
LCO=LIQ; * 
LCO.FNAME=TNAME; 
TNAME=GCO.FNAME; 



109 

GCO=GAS; 
GCO.FNAME=TNAME; 

On the basis of the specified gas and liquid carry-over fractions, set the carry-over mass 
flow rates. 

LCO.MASS=LIQ_C0*FLC2.MASS; 
LIQ.MASS=LIQ.MASS - LCO.MASS; 
GCO.MASS=GAS_C0*FLC1.MASS; 
GAS.MASS=GAS.MASS - GCO.MASS; 
IF VAPOR_INC = 'YES' THEN 

DO; 

If a calculation of liquid-vapor carry-over is desired, first set the value of the gas's 
molecular weight, assuming an ideal gas law. 

MW_GAS=GAS.RHO*GAS.TEMP*8314.3/(GAS.PRES*101325.0); 

Call the vapor pressure routine for liquids to determine the liquid vapor pressure at the 
liquid's temperature and to obtain the liquid's molecular weight. 

CALL VPSOLN(LIQ.ID,LIQ.TEMP,P_VAPOR,MW_VAP0R); 

Calculate the mass flow ra te of any liquid-vapor carry-over. 

VAPOR_CO=GAS.MASS*MW_VAPOR*P_VAPOR/(MW_GAS*(GAS.PRES-P_VAPOR)); 

Call the latent heat of vaporization procedure to determine the heat of vaporization of 
the liquid. Determine the total heat rejected due to the vapor carry-over. 

CALL HFGSOLN(LIQ.ID,LIQ.TEMP,HFG_VAPOR); 
HEAT_REJECTED=VAPOR_CO*HFG_VAPOR; * 

Readjust the liquid enthalpy due to the vapor carry-over loss. Call the properties code to 
obtain the new sta te conditions of the flow. (The vapor carry-over calculations are only 
approximate, since the code cannot at present mix this vapor with the gas-side flow. The 
liquid mass also is not readjusted for carry-over loss.) 

LIQ.ENTH=LIQ.ENTH-HEAT_REJEGTED/LIQ.MASS; 
CALL GP(NAME,LIQ,I0B); 

END; 
ELSE 

DO; 

If vapor carry-over calculations are not desired, set variables for printout. 

VAPOR_CO=0.0; 
HEAT_REJECTED=0.0; 

END; 



110 

Define any power loss due to vapor carry-over. (For most liquid-metal systems, the 
vapor carry-over would appear on the gas side; thus, this power loss may not be actual.) 

POWER.LOSS=HEAT_REJECTED; 

Calculate the efficiency of the separation process, based on the mass flow rates and 
velocities. 

EFFICIENCY=LIQ.MASS/(LIQ.MASS + GAS.MASS)* 
(LIQ.VEL/FLC2.VEL)**2; 

Save the exit flows. 

FLC1=GAS; 
FLC2=LIQ; 
FLC3=GC0; 
FLC4=LC0; 
RETURN; 
SEPROUT: ENTRY(SEPR_P); 
PUT SKIP EDITC ' ,NAME)(C0L(4),A); 
PUT EDITCVEL HEAD RATIO=',VELOCITY_HEAD_RATIO, 

'PRES DROPd) = ',PRES_DR0P(1), 
'PRES DR0P(2)=',PRES_DR0P(2), 
'EFFICIENCY=',EFFICIENCY, 
'VAPOR C/0=',VAPOR_CO, 
'HEAT REJECTED=',HEAT_REJECTED, 
'LIQUID C/0=',LIQ_CO, 
'GAS C/0=',GAS_CO) 
(COL(10) ,A,Ed2,5) ) ; 

END SEPRC; 

A.27 STACK MODEL 

A.27.1 Description of Model 

The stack model (SK) requires one pass-through flow of the generic type GAS. 
The parameters of the SK model are as follows: 

A TEMP — Specified ambient temperature at the stack exit. 

A PRES — Specified ambient pressure at the stack exit. 



HI 

A.27.2 Declaration Structure 

* PROCESS NAME('SKC'); 
SKC: PROC( SKP, GAS_P); 

DCL (SK_P, GAS_P) POINTER; 
DCL 1 SK BASED(SK_P), 

2 NAME CHARde), 
2 FLC, 
3 FNAME CHARde), 
3 ID CHARde) VARYING, 
3 AT0M(8) FLOATde), 
3 PROP, 
4 (TEMP,PRES,ENTH,ENTP,QUAL,RHO,VEL,MASS) FLOAT(ie), 

3 COMP, 
4 (XAR,XCH4,XCO,XCO2,XH,XH2,XH2O,XH2S,XK,XK0H,XNO,XN2, 
XO,XOH,X02,XS02,XHCL,XCH30H,XC,XCOS,XNH3,XS,XCL) FLOATde), 

3 SOL, 
4 WTF FLOATde), 

2 PARM, 
3 A_TEMP F L O A T d e ) , 
3 A_PRES F L O A T d e ) , 
3 ENERGY_REJECTED FLOATde ) , 

2 POWER, 
3 (INPUT,PRODUCED,CONSUMED,LOSS) F L O A T d e ) , 

2 COST F L O A T d e ) ; 
DCL GAS BASED(GAS_P) LIKE FLC, 

(GP) ENTRY; 

Save the inlet flow to the stack. 

FLC = GAS; 
% 

Set the exit conditions of the gas from the stack to match the ambient conditions. 

GAS.TEMP=A_TEMP; 
GAS.PRES=A_PRES; 

Call the properties code to determine the other state conditions at the stack exit. 

GALL GP(NAME,GAS,1B); 

Calculate the energy loss from the stack. 

LOSS, ENERGY_REJECTED = FLC.MASS*(FLC. ENTH+0. 5*FLC. VEL**2-GAS. ENTH) ; 

Save the exit flow from the stack. 

FLC=GAS; 
COST=0.0; 
RETURN; 



112 

SKOUT: ENTRY(SK_P); 
PUT SKIP EDITC ' ,NAME)(C0L(4),A) 
('ENERGY REJECTED = ',ENERCY_REJECTED,' W') 
(COL(10),A,E(12,5),A); 

END SKC; 

A.28 SOLID-OXIDE FUEL-CELL MODEL 

A.28.1 Description of Model 

The solid-oxide fuel-cell model (SOFC) requires two flows, both of the generic 
type GAS. The first flow represents the anode flow; the second, the cathode flow. 

The parameters of the SOFC model are as follows: 

CELL CURRENT — Specified current through each cell. 

CELL VOLTAGE — Calculated cell voltage. 

CELL TEMP — Specified average temperature of a cell. 

STACK VOLTAGE - Calculated total voltage across the cell stack. 

NO OF CELLS - Specified total number of cells in the stack. 

DELTA VOLT — Specified difference between the Nernst potential at 
the fuel-cell exit and the cell voltage. 

FUEL UTIL — Calculated value of the fuel utilization. 

02 UTIL - Calculated value of the O2 utilization. 

HF — Calculated value of the overall isothermal heat of reaction. 

E — Calculated Nernst potential at the fuel-cell exit. 

A.28.2 Declaration Structure 

* PROCESS NAME('SOFCC'); 
SOFCC: PROC(SOFC_P,FGAS1_P,FGAS2_P); 

DCL (S0FC_P,FGAS1_P,FGAS2_P) POINTER; 
DCL 1 SOFC BASED(SOFC_P), 

2 NAME CHARde), 
2 FLCl, 
3 FNAME CHARde), 



113 

3 ID CHARde) VARYING, 
3 AT0M(8) FLOATde), 
3 PROP, 
4 (TEMP,PRES,ENTH,ENTP,QUAL,RHO,VEL,MASS) FL0ATd6), 

3 COMP, 
4 (XAR,XCH4,XCO,XC02,XH,XH2,XH20,XH2S,XK,XKOH,XNO,XN2, 
XO,XOH,X02,XS02,XHCL,XCH30H,XC,XCOS,XNH3,NS,NCL) FL0AT(16), 

3 SOL, 
4 WTF FLOATde), 

2 FLC2, 
3 FNAME CHARde), 
3 ID CHARde) VARYING, 
3 AT0M(8) FLOATde), 
3 PROP, 
4 (TEMP,PRES,ENTH,ENTP,QUAL,RHO,VEL,MASS) FLOAT(ie), 

3 COMP, 
4 (XAR,XCH4,XCO,XC02,XH,XH2,XH20,XH2S,XK,XKOH,XNO,XN2, 
XO,XOH,X02,XS02,XHCL,XCH30H,XC,XCOS,XNH3,NS,NCL) FLOATde ), 

3 SOL, 
4 WTF FLOATde), 

2 PARM, 
3 CELL_CURRENT FLOATde ), 
3 CELL_VOLTAGE FL0AT(16), 
3 (STACK_VOLTAGE,CELL_TEMP) FLOAT(ie), 
3 NO_OF_CELLS FL0AT(16), 
3 DELTA_V0LT FLOATde), 
3 FUEL_UTIL FLOAT(ie), 
3 02_UTIL FLOATde), 
3 (HF,E) FLOATde), 

2 POWER, 
3 (INPUT,PRODUCED,CONSUMED,LOSS) FLOATde); 

DCL FGASl BASED(FGAS1_P) LIKE FLCl, FGAS2 BASED(FGAS2_P) LIKE FLG2; 
DCL (Y,01_M0L,02_M0L,H2_M0L,H_DEL_TC,MOLWT, 

H_DEL,TTRY,HAIN,HAIN_TG,HAOUT,HAOUT_TC,*F INIT(96487 .EO) , 
EO, P_H20_AN, P_C02_AN, P_H2_AN, P_C02_CA, P_02_GA, 
HCIN,HCINTC,HCOUT,HC0UT_TG,GR0SS_P0WER,CH4_REQ) FL0AT(16); 

DCL (GASBW,GASMR,GP) ENTRY; 
DCL SOV ENTRY(FLOATde),FLOAT(ie),FIXED BIN(15) ,FL0AT(16) , 

FLOATde ), FIXED BIN(15),FIXED BIN(15 ) ,CHAR(*) ) ; 

Perform the anode calculations: Initialize the power to zero. 

POWER = 0 . 0 ; 

Save the value of the inlet anode flow enthalpy. 

HAIN = FGASI.ENTH*FGAS1.MASS; 

Set the anode flow temperature to the specified cell temperature. Call the properties 
code to obtain the state conditions of the flow at this temperature. 

FGASl.TEMP = CELL_TEMP; 
CALL GP(NAME,FGASl,IB); 



114 

Save the value of the anode flow enthalpy at this cell temperature. 

HAIN_TC = FGASl.ENTH*FGASl.MASS; 

The fuel cell only works with the gas-flow streams, so any entrained-solid flow is 
temporarily subtracted and saved in the FLCl flow variables. 

FLCl.WTF=FGAS1.WTF*FGAS1.MASS; 
FGASl.MASS=FGASl.MASS-FLCl.WTF; 

The procedure GASMR calculates the molar flow rates of the flow, given the mass flow 
rate and the species' molar fractions, if its first argument is 1. These molar flow rates 
are temporarily stored in the FLCl variables. 

CALL GASMRdB, FGASl. COMP, FGASl. MASS, FLCl. COMP, MOL_WT); 

Given the cell current and number of cells, calculate the total number of moles of O, 
that will cross over from the cathode stream. This species is then added to that already 
within the anode stream. 

01_M0L = CELL_CURRENT*NO_OF_CELLS/(2000.0*F); 
02_M0L = Ol_MOL/2.0; 
FLC1.X02 = FLC1.X02+02_M0L; 

Calculate the hydrogen concentration within the anode flow. 

H2_M0L = 4.0*FLC1.XCH4+FLC1.XH2+FLC1.XCO; 

Check whether or not there is sufficient hydrogen concentration within the anode flow. 
If not, indicate how much more is needed and terminate. 

IF (H2_M0L < OI_MOL) THEN 
DO; 

CH4_REQ = 01_M0L*1.25/4.0 - FLC1.XH2; 
PUT SKIP(2) EDITC** ERROR IN SOFC:', 

'NOT ENOUGH FUEL IN ANODE INLET STREAM.', 
'INCREASE CH4 FLOW RATE TO ',CH4_REQ, 
'(MOL/S) OR MORE.') 
(SKIP(2),2 (C0L(4),A,SKIP(1)),C0L(4),A, 
E(13,5),X(2),A); 

STOP; 
END; 

Calculate the fuel utilization. 

FUEL_UTIL = 01_M0L/H2_M0L; 

Recalling the GASMR procedure (with its first argument set to 2), convert the molar 
flow rates back to species' molar fractions and obtain the total mass flow ra te . These 
values are placed in the FGASl flow variables. 

CALL GASMRdOB,FGASl.COMP,FGASl.MASS,FLCl.COMP,MOL WT); 



115 

Given the new values of the FGASl composition, call GASBW to obtain the ATOM array. 

CALL GASBW(FGASl.COMP,FGAS1.ATOM); 

Add any entrained solids back to the flow. Call the properties code to obtain the exit 
flow conditions. 

FGASl.MASS=FGAS1.MASS+FLCl.WTF; 
FGASl.WTF=FLC1.WTF/FGASl.MASS; 
CALL GP(NAME,FGASl,IB); 

Save the exit flow enthalpy from the anode. 

HAOUT_TC = FGASl.ENTH*FGASl.MASS; 

Next, perform the cathode calculations: Save the cathode inlet enthalpy. 

HCIN = FGAS2.ENTH*FGAS2.MASS; 

Set the cathode flow temperature to equal the cell temperature . 

FGAS2.TEMP = CELL_TEMP; 
CALL GP(NAME,FGAS2,1B); 
HCIN_TC = FGAS2.ENTH*FGAS2.MASS; 

Subtract any entrained solids and call GASMR to obtain the molar flow rates , as was 
done for the anode stream. 

FLC2.WTF=FGAS2.WTF*FGAS2.MASS; 
FGAS2 .MASS=FGAS2 .MASS-FLC2 .WTF; 
CALL GASMRdB,FGAS2.COMP,FGAS2.MASS,FLC2.COMP,MOL_WT); 

« 
Adjust the species' molar rates to reflect the crossover O2. Calculate the O2 utilization 
rate. 

02_UTIL = 02_MOL/FLC2.X02; 
FLC2.X02 = FLC2.X02-02_MOL; 

Check whether or not there is sufficient O2 with the s t ream. If not, indicate how much 
would be needed and terminate. 

IF (FLC2.X02 < 0.0) THEN 
DO; 

PUT SKIP(2) EDITC** ERROR IN SOFC:', 
'NOT ENOUGH 02 IN CATHODE INLET STREAM.', 
'INCREASE 02 MOLE RATE TO ',1.25*02_M0L, 
'(MOL/S) OR MORE') 
(SKIP(2),2 (COL(4) ,A,SKIP(l)) ,GOL(4) ,A,E(13,5) , 
X{2),A); 

STOP; 
END; 



116 

Convert back to molar fractions, set the new ATOM array values, add the subtracted 
entrained solids, and call the properties code. 

CALL GASMRdOB,FGAS2.COMP,FGAS2.MASS,FLC2.COMP,MOL_WT); 
CALL GASBW(FGAS2.COMP,FGAS2.ATOM); 
FGAS2.MASS=FGAS2.MASS+FLC2.WTF; 
FGAS2.WTF=FLC2.WTF/FGAS2.MASS; 
CALL GP(NAME,FGAS2,1B); 

Save the exit cathode flow enthalpy. 

HCOUT_TC = FGAS2.ENTH*FGAS2.MASS; 

Finally, perform the energy balance calculations: Save the total enthalpy change 
across the cell (at the cell temperature). 

H_DEL_TC=HAOUT_TC-HAIN_TC+HCOUT_TC-HCIN_TC; 
HF=-H_DEL_TC; 

The actual exit temperature of the cell will be determined by varying the exit 
temperature until the total enthalpy change across the cell stack represents the gross 
power produced by the cell. For the first try, the exit temperature is taken as equal to 
the cell temperature. Thereafter, it is controlled by the one-dimensional equation 
solver, SOV. 

TTRY=CELL_TEMP; 
DO 1=1 TO 25; 

TTRY=MAX(MIN(2.0*CELL_TEMP,TTRY),0.e*CELL_TEMP); 

Set the anode exit temperature and call the properties code to obtain the exit enthalpy. 

FGASl.TEMP = TTRY; 
CALL GP(NAME,FGASl,IB); 
HAOUT = FGASl.ENTH*FGASl.MASS; 

Set the cathode exit temperature and call the properties code to obtain the exit 
enthalpy. 

FGAS2.TEMP = TTRY; 
CALL GP(NAME,FGAS2,1B); 
HCOUT = FGAS2.ENTH*FGAS2.MASS; 

Calculate the total enthalpy change across the cell. 

H_DEL=HAOUT-HAIN+HCOUT-HCIN; 
STACK_VOLTAGE=NO_OF_CELLS*(0.920-DELTA_VOLT+4.3047E-5*CELL_TEMP* 

(0.5*LOG(FGAS1.PRES)+LOG(FGASl.XH2*FGAS2.XO2**0.5/FGASl.XH2O))); 
GROSS_POWER = STACK_VOLTAGE*CELL_CURRENT; 

The difference in enthalpy change and gross power is saved in the variable Y. The 
equation solver is called to obtain a new estimate of TTRY, the exit temperature . 



117 

Y=-H_DEL-GROSS_POWER; 
CALL SOV(TTRY,Y,I,100.0,0.1,25,0, 'SOFC_T'); 

END; 
CELL_VOLTAGE = STACK_VOLTAGE/NO_OF_CELLS; 

The power produced is saved for printout, and the exit flow conditions are saved. 

POWER.PRODUCED = GROSS_POWER; 

Calculate the Nernst potential at the cell exit. 

P_H20_AN = FGASl.XH20*FGASl.PRES; 
P_H2_AN = FGASl.XH2*FGASl.PRES; 
P_02_CA = FGAS2.X02*FGAS2.PRES; 
EO = .02ie82E0*(57.939E0-FGASl.TEMP*(11.527E-3+.6E-6*FGASl.TEMP)); 
E = E0+43.08eE-6*(LOG(P_H2_AN/(P_H2O_AN)) 

*FGAS1.TEMP+.5EO*LOG(P_02_CA)*FGAS2.TEMP); 
FLC1=FGAS1; 
FLC2=FGAS2; 
RETURN; 
SOFCOUT: ENTRY(SOFC_P); 
PUT SKIP EDITC ' ,NAME)(C0L(4),A); 
PUT SKIP(2) EDIT 
('CELL TEMPERATURE = ',CELL_TEMP,' K') 
(SKIP(2),COL(10),A,E(12,5),A) 
('CELL CURRENT = ',CELL_CURRENT, 
' A') (COL(10),A,E(12,5),A) 
('CELL VOLTAGE = ',CELL_VOLTAGE, 
' V ) (COL(10),A,F(17,5),A) 
('NO OF CELLS = ',NO_OF_CELLS) 
(COL(10),A,F(17,0)) 
('STACK VOLTAGE = ',STACK_VOLTAGE,' V ) 
(COL(10),A,E(12,5),A) • 
COVERALL ISOTHERMAL HEAT OF REACTION = ' , H F , 
' W') (COL(10),A,Ed2,5),A) 
('STACK GROSS POWER = ',POWER.PRODUCED,' W') 
(COL(10),A,E(I1.5).A) 
('NERNST POTENTIAL AT FUEL CELL EXIT = '.E,' V ) 
(COL(I0).A.Ed2.5),A) 
('FUEL UTILIZATION = ',FUEL_UTIL) 
(SKIP(2),COL(10),A,E(12,5)) 
('OXYGEN UTILIZATION = ',02_UTIL) 
(COL(10),A,E(12,5)); 

END SOFCC; 

A.29 FLOW-SPLITTER MODEL 

A.29.1 Description of Model 

The flow-splitter model (SP) requires one pass-through flow, representing the 
input flow and (on output) one of the two output flows. A second flow to the model 



118 

represents the second output flow. Both of these flows are of the generic type GAS. The 
SP model provides options for splitting the flow not only by mass, but also by 
composition. Thus, the SP model can be used to model processes that split off specific 
species of the input flow. 

The parameters of the SP model are as follows: 

SPLIT RATIO — Specified fraction of the input flow mass split off into 
the second flow. If SPLITRATIO is set, then SR (see below) should not 
be used. 

SPLITMASS — Specified portion of mass flow rate split off into the 
second flow, if set to be greater than zero. If this variable is set to 
zero, then the mass flow rate split off is defined by SPLITRATIO. 
SPLIT MASS must be less than the mass flow rate of the input flow. 

SR — Specified structure variable representing the split ratios by 
weight fractions of the species flow rates split off into the second 
flow. The elements of this structure are the same as those of the 
COMP substructure within the generic GAS flow, but without the "X" 
prefix (e.g., AR, CH4, 02 , S02). If the SR structure is specified, then 
the mass flow rate of the second flow is determined by the sum of the 
flow rates of the individual species. SR should not be specified if 
SPLIT RATIO is used. 

A.29.2 Declaration Structure 

* PROCESS NAME('SPG'); 
SPG: PROC( SPP, F1_P, F2_P); 

DCL (SPP, F1_P, F2_P) POINTER; 
DCL 1 SP BASED(SP_P), 

2 NAME CHARde), 
2 FLCl, 
3 FNAME CHARde), 
3 ID CHARde) VARYING, 
3 AT0M(8) FLOATde), 
3 PROP, 
4 (TEMP,PRES,ENTH,ENTP,QUAL,RHO,VEL,MASS) FLOAT(ie), 

3 COMP, 
4 (XAR,XCH4,XCO,XC02,XH,XH2,XH2O,XH2S,XK,XKOH,XNO,XN2, 
XO,XOH,X02,XS02,XHCL,XCH30H,XC,XCOS,XNH3,XS,XCL) FLOATde), 

3 SOL, 
4 WTF FLOATde), 

2 FLC2, 
3 FNAME CHARde), 
3 ID CHARde) VARYING, 
3 AT0M(8) FLOATde), 
3 PROP, 



119 

4 (TEMP,PRES,ENTH,ENTP,QUAL,RHO,VEL,MASS) FLOATde), 
3 COMP, 

4 (XAR,XCH4,XCO,XC02,XH,XH2,XH20,XH2S,XK,XKOH,XNO,XN2, 
XO,XOH,X02,XS02,XHCL,XCH30H,XG,XCOS,XNH3,XS,XCL) FLOATde), 

3 SOL, 
4 WTF FLOATde), 

2 PARM, 
3 SPLIT_RATIO FLOATde) , 
3 SPLIT_MASS FLOATde) , 
3 SR, 

4 (AR,CH4,CO,G02,H,H2,H20,H2S,K,KOH,NO,N2, 
0,OH,02,S02,HCL,CH30H,C,COS,NH3,S,CL) FLOAT(ie) , 

3 SR_SOL FLOATde) , 
3 POWER_REQUIRED FLOATde) , 

2 COST FLOATde) ; 
DCL (GASBW,GASNM,GP,GPSAT) ENTRY; 
DCL SPECMW LIKE FLCl.COMP BASED(MW_PTR); 
DCL MW(23) FLOATde) I N I T ( 3 9 . 9 4 8 , 1 6 . 0 4 3 0 3 , 2 8 . 0 1 0 5 5 , 4 4 . 0 0 9 9 5 , 1 . 0 0 7 9 7 , 

2 . 0 1 5 9 4 , 1 8 . 0 1 5 3 4 , 3 4 . 0 7 9 9 4 , 3 9 . 1 0 2 , 5 6 . 1 0 9 3 7 , 3 0 . 0 0 6 1 , 2 8 . 0 1 3 4 , 
1 5 . 9 9 9 4 , 1 7 . 0 0 7 3 7 , 3 1 . 9 9 8 8 , 6 4 . 0 6 2 8 , 3 6 . 4 6 0 9 7 4 , 3 2 . 0 4 2 4 3 , 1 2 . 0 1 1 1 5 , 
6 0 . 0 7 4 5 5 , 1 7 . 0 3 1 5 1 , 3 2 . 0 6 4 , 3 5 . 4 5 3 ) ; 

DCL (A_PTR,MW_PTR) POINTER; 
DCL ARRY(23) FL0AT(16) BASED(A_PTR); 
DCL (NM,PCRIT,HL,HV) FLOAT(ie); 
DCL TNAME CHARde) ; 
DCL Fl BASED(F1_P) LIKE FLCl, 

F2 BASED(F2_P) LIKE FLC2; 
MW_PTR=ADDR(MW); 

Initialize power required to zero. 

POWER_REQUIRED=0.0; 

Initialize second flow to be the same as the first flow. (The second flow's FNAME should 
not be changed during this initialization; it is temporarily saved in TNAME.) 

FLCl = Fl; 
TNAME=F2.FNAME; 
F2=F1; 
F2.FNAME=TNAME; 
IF SPLIT_RATIO>0.0 | SPLIT_MASS>0.0 THEN 

DO; 

If the flow is being split via a split ratio rather than by species ratios, then only the mass 
flow rates need to be readjusted. If the SPLIT MASS option is used, then the split ratio is 
determined first. 

IF SPLIT_MASS>0.0 THEN 
SPLIT_RATI0=SPLIT_MASS/F1.MASS; 

F2.MASS=SPLIT_RATI0*F1.MASS; 
F1.MASS=F1.MASS-F2.MASS; 

END; 



120 

ELSE 
DO; 

If the flow is being split via species split ratios, then the mass flow rates of the 
individual species must be calculated first. A call is made to GASNM to determine the 
total number of moles of the gas flow. 

CALL GASNM(F1.C0MP,NM); 

The mass flow rates of the split-off species are determined based on the individual split 
ratios, the species' molecular weights, and the flow's mass flow ra te , minus any 
entrained-solids flow. 

F2.C0MP=SR*NM*F1.C0MP*SPECMW*F1.MASS*(1.-F1.WTF); 

The mass flow rates of the remaining flow are then determined in similar fashion. 

Fl .COMP=( 1.0-SR)*NM*Fl .C0MP*SPECMW*F1 .MASS*d .0-Fl .WTF) ; 

The split between any entrained solids is then calculated, based on the specified split 
ratio (SR) for the solids. 

F2.WTF=SR_S0L*F1.WTF*F1.MASS; 
F1.WTF=(1.0-SR_SOL)*F1.WTF*F1.MASS; 

With the calculated mass flow rates of the individual species for the second flow, the 
total mass flow rate is determined by summation. The molar flow rates are then 
determined by dividing the mass flow rates by the species' molecular weights. The total 
number of moles is obtained by summing the molar flow rates. Finally, the molar 
fractions are obtained by dividing the molar rates by the total number of moles. 

A_PTR=ADDR(F2.COMP); 
F2.MASS=SUM(ARRY); 
F2.C0MP=F2.COMP/SPECMW; 
NM=SUM(ARRY); 
IF NM>0.0 THEN 
F2 . C0MP=F2 . COMP/NM; 

ELSE 
F2.COMP=0.0; 

The "save" sequence of calculations performed on the second flow are now performed on 
the first flow to obtain the new molar fractions for this flow. 

A_PTR=ADDR(F1.C0MP); 
F1.MASS=SUM(ARRY); 
Fl.C0MP=F1.COMP/SPECMW; 
A_PTR=ADDR(F1.COMP); 
NM=SUM(ARRY); , 
IF NM>0.0 THEN 

F1.C0MP=F1.COMP/NM; 
ELSE 

F1.COMP=0.0; 



121 

The procedure GASBW is called for each flow to obtain the new ATOM array for each. 

CALL GASBW(F1.COMP,Fl.ATOM); 
CALL GASBW(F2.COMP,F2.ATOM); 

The solid weight fractions and mass flow rates (including the solids) are calculated. The 
properties code is called for each flow. 

Fl.MASS=F1.MASS+Fl.WTF; 
F1.WTF=F1.WTF/FI.MASS; 
F2.MASS=F2.MASS+F2.WTF; 
F2.WTF=F2.WTF/F2.MASS; 
CALL GP(NAME,F1,1B); 
CALL GP(NAME,F2,1B); 

The required power is calculated, representing the enthalpy difference between the 
entering and exiting flows. 

P0WER_REQUIRED=F1.ENTH*F1.MASS+F2.ENTH*F2.MASS 
-FLCl.MASS*FLC1.ENTH; 

END; 
IF ABS(F2.XH2O-1.0)<lE-4 & F1.ID='GAS' THEN 

DO; 

If the flow split off from a GAS flow happens to be pure water, then the second flow type 
is set to H20 and is assumed to be on the saturation line. (As was the case with the MX 
model, this option should be used with caution.) 

F2.ID='H20'; 
CALL GPSAT(NAME,F2,PGRIT,HL,HV); 
F2.ENTH=HL; 
CALL GP(NAME,F2,10B); % 

END; 
COST=0.0; 

Save the exit flows. 

FLC1= Fl; 
FLC2= F2; 
RETURN; 

SPOUT: ENTRY(SP_P); 
PUT SKIP EDITC ' ,NAME)(C0L(4),A); 
PUT SKIP(2) EDITCSPLIT RATIO = ' , SPLIT_RATIO, 

'POWER REQUIRED =',POWER_REQUIRED) 
(COL(10),A,E(12,5)); 

END SPC; 



122 

A.30 STEAM-TURBINE MODEL 

A.30.1 Description of Model 

The steam-turbine model (ST) provides options for modeling a typical extraction 
stage, as well as inlet and exhaust stages. The model requires one pass-through flow and 
one output flow, representing any extracted flow from the turbine stage. This extracted 
flow is at the same thermodynamic conditions as the pass-through flow. The extracted 
flow is extracted at the exit of the turbine stage; turbine trains with multiple extraction 
points would be modeled using multiple ST models. Both of the flows to the ST model are 
of the generic type STM. 

The model provides for an off-design mode by calculating a flow factor in the 
design mode that is then used in the off-design mode. This flow factor represents a 
nondimensional flow rate that the turbine stage can pass. In the off-design mode, the 
parameter CONS (based on this flow factor) should be constrained to equal zero. 

Tables of exhaust-loss enthalpy corrections for use in the exhaust stage may be 
read in by calling STIN. These tables define the value of the exhaust-loss enthalpy vs. 
the turbine inlet mass, normalized by dividing by a design-point mass. This exhaust-loss 
enthalpy is then added to the exit-flow enthalpy from the turbine. (In design-mode 
calculations, this design-point mass flow rate is assigned the value of the inlet mass.) 

For the inlet turbine stage in the design mode, the exit pressure is calculated to 
give a required steam flow velocity. This required velocity is obtained from a specified 
turbine-wheel speed and a specified wheel-to-flow-velocity ratio. The efficiency is also 
calculated, for both the design and off-design modes, as a function of this wheel-to-flow-
velocity ratio. 

The parameters of the ST model are as follows: 

DDNAME ~ Specified character string representing the file name that 
STIN will read to obtain the table of exhaust-loss enthalpies. 

MODE — Specified character string, either "OFF-DESIGN" or 
"DESIGN." In modeling throttle stages, the characters "IN" may also be 
appended to the end of the mode string. 

EXIT PRES — Specified exit pressure of the turbine. 

EFFICIENCY — Specified efficiency of the turbine expansion. 

MECH EFF — Mechanical efficiency of the turbine. Any 

thermodynamic energy extracted from the turbine is multiplied by this 
efficiency to obtain the usable power. 

SR — Specified split ratio of the extracted flow. The mass flow ra te of 
the extracted flow is equal to SR times the input mass flow rate . 



123 

EXTMASS ~ Specified extracted mass flow rate. If EXTMASS is 
specified, it overrides SR. (EXTMASS should be less than the inlet 
mass flow rate.) 

FLOW_FACT — Flow factor, calculated in the design mode and 
specified in the off-design mode. 

EXHAUSTLOSS — Specified or calculated value of the exhaust-loss 
enthalpy. If STIN has been called, this value is obtained from the 
tables; otherwise, the value may be specified as an input. 

DM — Specified value of the design-point mass flow rate in the off-
design mode. In the design mode, this parameter is set equal to the 
inlet mass flow rate to the turbine. 

WV — Specified turbine wheel-to-flow-velocity ratio, used only in the 
turbine-inlet stage. 

WHEELSPEED — Specified turbine-wheel speed, used only in the 
turbine-inlet stage. 

CONS ~ Calculated parameter in the off-design mode, representing a 
measure of the mass flow rate that the turbine stage can pass for the 
various inlet conditions. This parameter should be constrained to equal 
zero during off-design calculations. 

VOLFLOW RATE — Calculated volume flow rate through the turbine. 

PRINT — Specified switch used to print out iterations within the 
turbine-inlet-stage option during the calculation Of exit pressure. 

A.30.2 Declaration Structure 

* PROCESS NAME('STC'); 
STC: PROC( ST_P, STM_P, STME_P ) ; 

DCL (ST_P, STM_P, STME_P) POINTER; 
DCL 1 ST BASED(ST_P), 

2 NAME CHARde) , 
2 FLCl, 

3 FNAME CHARde) , 
3 ID CHARde) VARYING, 
3 AT0M(8) FLOATde) , 
3 PROP, 

4 (TEMP,PRES,ENTH,ENTP,QUAL,RHO,VEL,MASS) FL0AT(16) , 
3 COMP, 

4 (XAR,XCH4,XCO,XC02,XH,XH2,XH20,XH2S,XK,XKOH,XNO,XN2, 
XO,XOH,X02,XS02,XHCL,XCH30H,XC,XCOS,XNH3,XS,XCL) FL0AT(16) , 



124 

3 SOL, 
4 WTF FLOATde), 

2 FLC2, 
3 FNAME CHARde), 
3 ID CHARde) VARYING, 
3 AT0M(8) FLOAT(ie), 
3 PROP, 
4 (TEMP,PRES,ENTH,ENTP,QUAL,RHO,VEL,MASS) FL0AT(16), 

3 COMP, 

4 (XAR,XCH4,XCO,XC02,XH,XH2,XH20,XH2S,XK,XKOH,XNO,XN2, 
XO,XOH,X02,XS02,XHCL,XCH30H,XC,XCOS,XNH3,XS,XCL) FLOATde), 

3 SOL, 
4 WTF FLOATde), 

2 PARM, 
3 DDNAME CHAR(7), 
3 MODE C H A R d S ) , 
3 EXIT_PRES F L O A T d e ) , 
3 EFFICIENCY FL0AT(16) , 
3 MECH_EFF F L O A T d e ) , 
3 SR F L O A T d e ) , 
3 EXT_MASS F L O A T d e ) , 
3 FLOW_FACT F L O A T d e ) , 
3 EXHAUST_LOSS FLOAT( ie ) , 
3 DM F L O A T d e ) , 
3 WV F L O A T d e ) , 
3 WHEEL_SPEED F L O A T d e ) , 
3 CONS F L O A T d e ) , 
3 VOL_FLOW_RATE F L 0 A T d 6 ) , 
3 PRINT FIXED B I N ( 1 5 ) , 

2 POWER, 
3 (INPUT,PRODUCED,CONSUMED,LOSS) FLOATde) , 

2 E_LOSS, 
3 PTR POINTER, 

2 COST F L O A T d e ) ; 
DCL STM BASED(STM_P) LIKE FLCl , 

STME BASED(STME_P) LIKE FLCl ; 
DCL (GOV I N I T ( 1 0 1 3 2 5 . 0 ) , VELC) FLOAT( ie ) , 

( I ) FIXED B I N d 5 ) , 
TNAME C H A R d e ) , 

SOV ENTRY(FLOAT(ie),FLOAT(ie),FIXED B I N d S ) . F L O A T d e ) , 
FLOATde) ,FIXED B I N d S ) , F I X E D B I N d S ) ,CHAR(*) ) , 

NULL BUILTIN, 
(GP, TABC, TABIN) ENTRY; 

Initialize the power to zero. Call the properties code to make sure the inlet conditions 

are consistent. (This call should not be necessary, but it has been retained for safety, in 

case new models are added for which the exiting flows have not been made consistent. 

POWER = O.OEO; 
GALL GP(NAME,STM,10B); 

Save the inlet flow. 

FLCl = STM; 



125 

A calculation of the isentropic expansion tiirough the turbine is made first. The exit 
pressure is set , and a call is made to the properties code with the third argument set to 3 
(indicating that the flow's pressure and entropy will be used as the two input s ta te 
variables). 

STM. PRES=EXIT_PRES; 
CALL GP(NAME,STM,11B); 
IF INDEX(MODE,'OFF-DESIGN')=0 THEN 

DO; 

If the model is being run in the design mode (i.e., the mode is not equal to OFF-DESIGN), 
set the value of the mass flow ra te in DM first and calculate the flow factor to be used 
in any off-design run. 

DM=STM.MASS; 
FLOW_FACT=STM.MASS*SQRT(MAX(FLC1.TEMP,0.))/(FLC1.PRES*COV); 
IF INDEX(MODE,'IN')=0 THEN 

DO; 

If the mode sett ing contains the characters IN, then the efficiency of the turbine stage is 
set based on the specified turbine wheel-to-flow-velocity ratio. In this case, the exit 
pressure is calculated to represent a throt t le process at constant enthalpy. This is done 
by varying the exit pressure and calling the properties code until the calculated exit 
enthalpy is equal to the inlet enthalpy. The one-dimensional equation solver, SOV, is 
used to vary the exit pressure. 

EFFICIENCY=S.84*WV*(1.0-2*WV); 
VELC=WHEEL_SPEED/WV; 
STM. ENTH=FLC1. ENTH-0. 5*VELC-*VELC; 
DO 1=1 TO 15; 

STM.PRES=EXIT_PRES; 
CALL GP(NAME,STM,10B); * 
CALL SOV(EXIT_PRES,STM.ENTP-FLC1.ENTP,I,1.0,1E-6,15,PRINT, 

'ST P ' ) ; 
END; 

END; 
END; 

ELSE 
DO; 

If the mode is set to OFF-DESIGN, then the flow factor (as calculated in a design-mode 
run) is used along with the current inlet flow conditions to evaluate CONS. This variable 
should be constrained to equal zero by suitably varying some variable within the system. 
(Basically, this constraint represents the choking-flow conditions that will occur within 
the turbine.) Depending on the system, there may be more than one way in which to 
force CONS to equal zero. Varying the exit pressure or split ratio from the previous 
turbine stage are the most common means of constraining CONS to be zero. 

C0NS=FLC1 .PRES-FLCl .MASS*SQRT(MAX(FLC1 .TEMP,0 . ) ) / ( FLOW_FACT*COV) J 
IF INDEX(MODE,'IN')=0 THEN 

DO; 



126 

If this stage is an inlet stage, the efficiency is calculated based on the ratio of wheel 
speed to fluid velocity, as in the design mode. For the off-design mode, the exit pressure 
is specified. 

VELC=SQRT(2.*MAX(0.0.FLCl.ENTH-STM.ENTH)); 
IF VELC=0.0 THEN 

WV=0.30; 
ELSE 

WV=WHEEL_SPEED/VELC; 
EFFICIENCY=5.84*WV*(1.0-2*WV); 

END; 
END; 

If the optional call to STIN has been made, then the exhaust-loss table is used along with 
the normalized (with respect to the design mass flow rate) mass flow rate to obtain the 
exhaust-loss enthalpy, which is added to the exit enthalpy for the stage. 

IF E_LOSS.PTR=NULL THEN 
CALL TABC(E_LOSS.STM.MASS/DM.EXHAUST_LOSS); 

The exit enthalpy is calculated, based on the efficiency of the stage and any exhaust-loss 
enthalpy. 

STM.ENTH=EFFICIENCY*(STM.ENTH-FLC1.ENTH)+FLCI.ENTH+EXHAUST_LOSS; 

A call is now made to the properties code to obtain the other state variables at the exit 
conditions of pressure and enthalpy. 

CALL GP(NAME.STM.IOB); 

For printout, the volume flow rate is calculated. The usable output power is obtained by 
multiplying the enthalpy drop through the turbine by the mechanical efficiency. 

VOL_FLOW_RATE=STM.MASS/STM.RHO; 
POWER. PRODUCED=MECH_EFF*( FLC 1. ENTH-STM, ENTH )*FLC 1. MASS; 

Any extraction flow is now calculated, based on either EXT MASS or SR. The extraction 
flow is initialized to the same state conditions as the main exit flow. 

IF EXT_MASS>0.0 THEN 
SR=EXT_MASS/STM.MASS; 

TNAME=STME.FNAME; 
STME=STM; 
STME.FNAME=TNAME; 
STME.MASS=SR*STM.MASS; 
STM.MASS=STM.MASS-STME.MASS; 
COST = 0.0; 



127 

Save the exit flows. 

FLCl = STM; 
FLC2=STME; 
RETURN; 

STIN: ENTRY(ST_P); 

STIN is an optional entry that may be called to obtain tables of exhaust loss vs. 
normalized mass flow ra tes . The data organization for a call to TABIN is described 
under TABIN. 

IF MODE='DESIGN' THEN 
CALL TABIN(E_LOSS,DDNAME); 

RETURN; 

STOUT: ENTRY(ST P ) ; 
PUT SKIP EDIT('^ ' ,NAME)(C0L(4),A); 
PUT SKIP(2) EDITCMODE = ',PARM.MODE, 

'TURBINE EFFICIENCY = ',PARM.EFFICIENCY, 
'MECHANICAL EFFICIENCY = ',PARM.MECH_EFF, 
'POWER PRODUCED = ',POWER.PRODUCED, 
'FLOW FACTOR = ',PARM.FLOW_FACT, 
'DESIGN MASS FLOW RATE = '.PARM.DM. 
'SPLIT RATIO = '.PARM.SR. 
'VOL FLOW RATE = '.PARM.VOL_FLOW_RATE. 
'EXHAUST LOSS = '.PARM.EXHAUST_LOSS) 

(COLdO).A.A.8 ( C O L d O ) , A , E d 3 , 5 ) ) ) ; 
IF INDEX(M0DE,'IN')=0 THEN 

PUT EDITCWHEEL SPEED = ' ,PARM.WHEEL_SPEED. 
'WHEEL TO STEAM VEL RATIO = '.PARM.WV) 
(COL(10) .A.E(13,5)) ; 

END STC; ' 

A.31 SYSTEM MODEL 

A.31.1 Description of Model 

The system model (SYST) calculates the total power put in, produced, consumed, 
and lost by the system. The model does not require any flows. 

The parameters of the SYST model are as follows: 

P O W E R H E A D P T R — Specified pointer to the linked list of model 
POWER substructures. 

FLOW_HEAD PTR - Specified pointer to the linked list of model FLOW 
substructures. 



128 

NET — Calculated net power produced by the system (total power 
produced minus total power consumed). 

EFFICIENCY — Calculated system efficiency based on total power 
input, net power, and auxiliary power. If total input power is zero, 
EFFICIENCY is also set to zero. 

AUXILIARY — Specified value of any auxiliary-power requirements. 
AUXILIARY is subtracted from net power in calculating efficiency. 

UNITS — Character string that indicates SI for output in SI units; 
otherwise, British units are used for output. 

A.31.2 Declaration Structure 

* PROCESS N A M E C S Y S T C ' ) ; 

SYSTC: PROC(SYST_P); 

DCL SYST_P POINTER; 
DCL 1 SYST BASED(SYST_P), 

2 NAME C H A R d e ) . 
2 PARM, 

3 POWER_HEAD_PTR POINTER, 
3 FLOW_HEAD_PTR POINTER, 
3 NET F L O A T d e ) , 
3 EFFICIENCY FLOAT( ie ) , 
3 AUXILIARY F L O A T d e ) , 
3 UNITS CHAR(7), 

2 SPOWER, 

3 (INPUT,PRODUCED,CONSUMED,LOSS) FLOATde); 
DCL 1 LINK BASED(LPT), 

2 (MP,LP,NP) POINTER; 
DCL 1 POWER BASED(PPT), 

2 (INPUT,PRODUCED,CONSUMED,LOSS) F L O A T d e ) ; 
DCL 1 FLOW BASED(FPT), 

2 NAME C H A R d e ) , 
2 ID CHARde) VARYING, 
2 AT0M(8) FLOAT( ie ) , 
2 PROP, 

3 ( T , P , H , S , Q , R , V , M ) F L O A T d e ) , 
2 COMP, 

3 (XAR,XCH4,XCO,XC02,XH,XH2,XH20,XH2S,XK,XKOH,XNO,XN2, 
XO,XOH,X02,XS02,XHCL,XCH30H,XC,XCOS,XNH3,XS,XCL) FLOATde), 

2 SOL, 
3 WTF FLOATde); 

DCL 1 MOD BASED, 
2 NAME CHARde); 

DCL FNAME CHARde); 
DCL MNAME CHARde); * 
DCL (LPT.PPT.FPT.TPT) POINTER; 
DCL (NULL.ADDR) BUILTIN; 



129 

DCL Y(23) FLOATde) BASED(Y_PT); 
DCL Y_PT POINTER; 
DCL ( I , J ) FIXED B I N d S ) ; 
DCL FLAG B I T d ) ; 
DCL (SV,E) FLOATde) ; 

DCL SPEC(23) CHAR(3) STATIC I N I T C A R ' , ' C H 4 ' , ' C O ' , ' C 0 2 ' 'H' 'H2' 
' H 2 O ' , ' H 2 S ' , ' K ' , ' K O H ' , ' N O ' . ' N 2 ' , ' O ' , ' 0 H ' , ' O 2 ' , ' S 0 2 ' ! ' H C L ' , ' 
' M E T ' , ' C ' , ' C 0 S ' , ' N H 3 ' , ' S ' , ' C L ' ) ; 

SPOWER=0.0; 
DO LPT=POWER_HEAD_PTR REPEAT(LINK.NP) WHILE(LPT=NULL); 

PPT=LINK.LP; 
SPOWER=SPOWER+POWER; 

END; 
NET=SPOWER.PRODUCED-SPOWER.CONSUMED-AUXILIARY; 
IF SPOWER.INPUT=0.0 THEN 
EFFICIENCY=NET/SPOWER.INPUT; 

ELSE 
EFFICIENCY=0.0; 

RETURN; 

SYSTOUT: ENTRY(SYST_P); 
IF FLOW_HEAD_PTR=NULL THEN 
IF FLOW_HEAD_PTR->LINK.MP=NULL THEN 

DO; 
PUT PAGE E D I T C O U T P U T BY FLOW') (COL(50) ,A) ; 
DO LPT=FLOW_HEAD_PTR REPEAT(LINK.NP) WHILE(LPT=NULL); 

FPT=LINK.LP; 
FNAME=FLOW.NAME; 
DO TPT=FLOW_HEAD_PTR REPEAT(TPT->LINK.NP) WHILE(TPT=LPT); 

IF TPT->LINK.LP->FLOW.NAME=FNAME THEN 
GO TO NEXT_FLOW; 

END; 
PUT EDITCFLOW; ' ,FNAME)(SKIP(2) ,C0L(2) ,A, A) ; 
PUT EDITC ','MODEL','PRES.','TEM^.','VELOCITY','ENTH.', 

'MASS','SPEG VOL','ENERGY','QUALITY') 
(SKIP,A,SKIP.COL(5).A.COL(28),A,COL(41),A.COL(51).A.COL(64), 
A,COL(76),A,COL(8e),A,COL(100),A,COL(110),A); 

IF UNITS='SI' THEN 
PUT SKIP EDITC(ATM)','(K)','(M/S)'.'(J/KG)','(KG/S)', 

'(M**3/KG)','(W)') 
(COL(28),A,COL(42),A,COL(53),A,COL(e3),A,COL(75),A, 
COL(86) ,A,COLd01) ,A); 

ELSE 
PUT SKIP EDITC(PSI)','(F)','(FT/S)','(BTU/LB)'.'(LB/HR)', 

'(FT**3/LB)','(BTU/HR)') 

(COL(28) ,A ,COL(42) ,A ,COL(52) ,A ,COL(e2 ) ,A ,COL(75) ,A , 
COL(8e ) .A .COL(99) ,A) ; 

DO TPT=FLOW_HEAD_PTR REPEAT(TPT->LINK.NP) WHILE(TPT=NULL); 
FPT=TPT->LINK.LP; 
IF FLOW.NAME=FNAME THEN 

DO; 

MNAME=TPT->LINK.MP->MOD.NAME; 
SV=I.O/R; 

E=M*(H+0.5*V*V); 



130 

IF UNITS='SI' THEN 
PUT SKIP EDIT(MNAME.P.T,V.H.M.SV,E,Q) 

(COL(S),A,COL(25),7 (EdO,3) ,X(2 ) ) ,E(8 ,1 ) ); 
ELSE 
PUT SKIP EDIT(MNAME,P*14.69595,1.8*T-459.67,V*3.2808, 
H/2324.444,M/1.25998E-4,SV*3.28**3/2.2,E/0.292875,Q) 
(COL(5),A,COL(25),7 (E(10,3),X(2)),E(8,1)); 

END; 
END; 

NEXT_FLOW: 
END; 

END; 
FLAG='1'B; 
IF FLOW_HEAD_PTR=NULL THEN 
IF FLOW_HEAD_PTR->LINK.MP=NULL THEN 
DO; 
DO LPT=FLOW_HEAD_PTR REPEAT(LINK.NP) WHILE(LPT=NULL); 
FPT=LINK.LP; 
IF FLOW.ID='GAS' THEN 
GO TO NEXT_FLOW_COMP; 

IF FLAG THEN 
DO; 
FLAG='0'B; 
PUT PAGE EDITCCOMPOSITION OUTPUT BY FLOW')(COL(40 ) , A ) ; 

END; 
FNAME=FL0W.NAME; 

DO TPT=FLOW_HEAD_PTR REPEAT(TPT->LINK.NP) WHILE(TPT=LPT); 
IF TPT->LINK.LP->FLOW.NAME=FNAME THEN 

GO TO NEXT_FLOW_COMP; 
END; 
PUT EDITCFLOW: ',FNAME,' ' ) (SKIP(2 ) ,C0L(2 ) , A, A ) ; 
DO TPT=FLOW_HEAD_PTR REPEAT(TPT->LINK.NP) 

WHILE(TPT=NULL); 
FPT=TPT->LINK.LP; 
IF FLOW.NAME=FNAME THEN 

DO; 
Y_PT=ADDR(FLOW.COMP); 
MNAME=TPT->LINK.MP->MOD.NAME; 
PUT SKIP EDIT(MNAME)(C0L(5),A); 
1=0; 
DO J = l TO 2 3 ; 

IF Y(J)>5E-6 THEN 
DO; 

1=1+1; 
IF 1=8 I 1=15 I 1=22 THEN 

PUT SKIP EDITC • ) ( C O L ( 2 0 ) , A ) ; 
PUT EDIT(SPEC(J) , '= ' , Y ( J ) , ' ' ) 

( A ( 3 ) , A , F ( 7 , 5 ) , A ( 2 ) ) ; 
END; 

END; 
END; 

END; 
NEXT_FLOW_COMP: 

END; 



131 

END; 
IF POWER_HEAD_PTR =NULL THEN 
IF POWER_HEAD_PTR->LINK.MP=NULL THEN 
DO; 
PUT PAGE EDITC ','POWER SUMMARY')(COL(25 ),A) ; 
PUT SKIP EDITCMODEL'. 'INPUT'. 'PRODUCED','CONSUMED'. 

'LOSS') 

(SKIP,COL(5).A,COL(27).A.COL(38).A.COL(50).A. 
COL(63).A); 

PUT SKIP EDITC (W)'.'(W)','(W)','(W)'.' ') 
(COL(28).A,COL(40),A,COL(52),A.COL(63).A); 

DO LPT=POWER_HEAD_PTR REPEAT(LINK.NP) WHILE(LPT=NULL); 
PPT=LINK.LP; 
MNAME=LINK.MP->MOD.NAME; 
PUT SKIP EDIT(MNAME.POWER) 
(COL(5),A(I5),COL(23),4 (X(2),E(10,3))); 

END; 
PUT EDIT(SYST.NAME,SPOWER) 
(SKIP(2),COL(5),A(15),COL(23),4 (X(2) ,EdO,3))); 

PUT SKIP EDITCNET',SYST.NET,'AUXILIARY',SYST.AUXILIARY, 
'EFFICIENCY' ,SYST.EFFICIENCY) 
(SKIP,COL(5),A(15),COL(25),E(10,3)); 

END; 
END SYSTC; 

A.32 TWO-PHASE DIFFUSER MODEL 

A.32.1 Description of Model 

The two-phase, two-component diffuser model (TPDF) requires two pass-through 
flows, the first representing the gaseous-phase comp6nent and the second the liquid-
phase component. Both of these flows are of the generic type GAS or LIQ. 

The parameters of the TPDF model are as follows: 

MODE — Specified character string taking on the values " " or "SPEC-
EFF." If "SPEC-EFF" is not set, then the efficiency of the diffusion 
process is calculated within the code (based on the void fraction of the 
flow). 

EXIT VELOCITY - Specified exit velocity of the liquid flow. 

SLIPRATIO — Specified ratio of the gas velocity to the liquid velocity. 

EFFICIENCY - Specified efficiency of the diffuser, defined as the 
ratio of change in pressure across the diffuser to the change in velocity 
head across the diffuser. 



132 

LENGTH — Specified length of the diffuser (used in calculating 
additional pressure changes due to gravity). 

GRAV_ANGLE — Specified angle the diffuser makes with the 
gravitational field. 

VOID FRAC IN — Calculated inlet void fraction. 

VOID FRAC OUT — Calculated exit void fraction. 

A.32.2 Declaration Structure 

* PROCESS N A M E C T P D F C ' ) ; 

TPDFC: PROC(TPDF_P, GAS_P, LIQ_P); 

DCL (TPDF_P, GAS_P, LIQ_P) POINTER; 
DCL 1 TPDF BASED(TPDF_P), 

2 NAME CHARde) , 
2 FLCl, 

3 FNAME CHARde) , 
3 ID CHARde) VARYING, 
3 AT0M(8) FLOATde) , 
3 PROP, 

4 (TEMP,PRES,ENTH,ENTP,QUAL,RHO,VEL,MASS) FLOAT(ie) , 
3 COMP, 

4 (XAR,XCH4,XCO,XC02,XH,XH2,XH20,XH2S,XK,XKOH,XNO,XN2, 
XO,XOH,X02,XS02,XHCL,XGH30H,XC,XCOS,XNH3,XS,XCL) FLOATde) , 

3 SOL, 
4 WTF FLOATde) , 

2 FLC2, 
3 FNAME CHARde) , 
3 ID CHARde) VARYING, 
3 AT0M(8) FLOATde) , 
3 PROP, 

4 (TEMP,PRES,ENTH,ENTP,QUAL,RHO,VEL,MASS) FL0AT(16) , 
3 COMP, 

4 (XAR,XCH4,XCO,XC02,XH,XH2,XH20,XH2S,XK,XKOH,XNO,XN2, 
XO,XOH,X02,XS02,XHCL,XCH30H,XC,XCOS,XNH3,XS,XCL) FLOATde) , 

3 SOL, 
4 WTF FLOATde) , 

2 PARM, 
3 MODE CHAR(8), 
3 EXIT_VELOCITY FL0AT(16), 
3 SLIP_RATIO FLOAT(ie), 
3 EFFICIENCY F L 0 A T d 6 ) , 
3 LENGTH FLOATde) , 
3 GRAV_ANGLE FL0AT(16), 
3 VOID_FRAC_IN FLOATde) , 
3 VOID_FRAC_OUT FLOAT(ie); 

DCL (H_EXIT,F,HL,HV) FLOAT(ie); 
DCL (R IN,R OUT,R AV,GRAV) F L 0 A T d 6 ) ; 



133 

DCL (I,J) FIXED BINdS); 
DCL GP ENTRY; 
DCL SOV ENTRY( FLOAT(ie), FL0ATd6), FIXED BIN(lS) 

FLOATde), FLOATde), FIXED BIN(IS), FIXED BIN(15) CHAR(8))-
DCL GAS BASED(GAS_P) LIKE FLCl; '^\°'/, 
DCL LIQ BASED(LIQ_P) LIKE FLC2; 

Save the inlet flows. 

FLC1=GAS; 
FLC2=LIQ; 

Calculate the inlet void fraction. 

V0ID_FRAC_IN=1./(1.+LIQ.MASS*GAS.RH0*GAS.VEL/ 
{GAS.MASS*LIQ.RHO*LIQ.VEL)); 

Calculate the inlet density of the gas-liquid mixture. 

R_IN=VOID_FRAC_IN*GAS.RHO + (1 .-VOID_FRAC_IN)*LIQ.RHO; 

Initially, set the average density equal to the inlet density. 

R_AV = R_IN; 

If the mode is not "SPEC-EFF," calculate the efficiency based on the inlet void 
fraction. A simple empirical fit is used. 

IF MODE='SPEC-EFF' THEN 
PARM.EFFICIENCY=0.85-0.09*(VOID_FRAC_IN/d.-VOID_FRAC_IN)); 

Set the exit velocities of both flows, based on the specified exit velocity and the 
specified slip rat io. 

FLC2.VEL =PARM.EXIT_VELOCITY; 
FLCl.VEL =PARM.EXIT_VELOGITY*PARM.SLIP_RATIO; 

Calculate the exit enthalpy of the gas-liquid mixture, using conservation of energy and 
the change in velocities. 

GRAV=9.806e5*LENGTH*COSD(GRAV_ANGLE); 
H_EXIT =GAS.MASS*(GAS.ENTH+0.5*(GAS.VEL**2-FLC1.VEL**2)+GRAV) 

+LIQ.MASS*(LIQ.ENTH+0.5*(LIQ.VEL**2-FLG2.VEL**2)+GRAV); 

When the gravitational angle is not 90°, the change in pressure across the diffuser is also 
dependent on the density change, which is not known. A simple corrector iteration is 
made to evaluate the average density along the diffuser. The calculations of the exit 
conditions are made twice, once with the average density set equal to the inlet value and 
once with the average density averaged over the inlet and exit values. 

DO J = l , 2 WHILE(GRAV=0.0); 



134 

Calculate the exit pressure, based on the specified efficiency and the average density. 

FLC2.PRES =LIQ.PRES +0.S*LIQ.RHO/101325.*PARM.EFFICIENCY 
*(LIQ.VEL**2-FLC2.VEL**2)+R_AV*GRAV/101325.0; 

The enthalpies of the individual fluids are obtained by iterating over the enthalpy of the 
gas flow. At each iteration, the enthalpy of the gas is used (through the properties code) 
to determine its temperature. The liquid temperature is then set equal to the gas 
temperature, and the properties code is called again to determine the liquid's enthalpy. 
The combined enthalpy is then obtained and used by the one-dimensional equation solver 
to determine the next iterative value for the gas enthalpy. 

FLCl.PRES=FLC2.PRES; 
DO 1=1 TO 20; 

CALL GP(NAME,FLC1,10B); 
FLC2.TEMP=FLC1.TEMP; 
CALL GP(NAME,FLC2,1B); 
F=H_EXIT-FLC1.MASS*FLC1.ENTH-FLC2.MASS*FLG2.ENTH; 
CALL SOV(FLCl.ENTH,F,I,1E3,1E-S,20,0,'TPDF'); 

END; 

Calculate the exit void fraction and exit density. 

VOID_FRAC_0UT=1./(1.+LIQ.MASS*GAS.RHO*GAS.VEL/ 
(GAS.MASS*LIQ.RHO*LIQ.VEL)); 

R_OUT=VOID_FRAC_0UT*GAS.RHO+(1.0-VOID_FRAC_OUT)*LIQ.RHO; 

Bring the average density up to date so it can be used in the second iteration (if GRAV is 
not zero). 

R_AV= (R_IN + R_0UT)/2.; 
END; 

Save the exit flows. 

GAS = FLCl; 
LIQ = FLC2; 
RETURN; 
TPDFOUT; ENTRY( TPDF_P ); 
PUT SKIP EDITC ',NAME)(C0L(4),A) 

('MODE=',MODE)(COL(10),A,A) 
('LENGTH =',LENGTH,'GRAV ANGLE =',GRAV_ANGLE, 
'Efficiency =',PARM.EFFICIENCY, 
'SLIP RATIO =',PARM.SLIP_RATIO, 
'VOID FRAC_IN=',PARM.VOID_FRAC_IN, 
'VOID FRAC_OUT=',PARM.VOID_FRAC_OUT) 

(COL(10),A,Ed2,5)); 
END TPDFC; 



135 

A.33 TWO-PHASE MIXER MODEL 

A.33.1 Description of Model 

The two-phase, two-component mixer model (TPMX) requires two pass-through 
flows, the first being the gaseous component and the second, the liquid component. The 
parameters of the TPMX model are as follows; 

PRES OUT OPTION — Specified character string defining an option for 
calculating the exit pressure as a weighted average of the gas and 
liquid inlet pressures. If mix is equal to "MIX," this option is used; 
otherwise, the output flow pressure is taken as the minimum inlet flow 
pressure minus any specified pressure drop. 

PRES DROP — Specified pressure drop through the mixer. 

DP FRAC — Specified fraction of the minimum or weighted average 
inlet pressure, used as an additional pressure drop through the mixer. 

SLIP RATIO — Specified ratio between the gas and liquid flow 
velocities. 
TEMP DIFF — Specified difference between the gas temperature and 
that of the liquid. 

PRES DIFF IN — Calculated difference between the gas inlet pressure 
and that of the liquid. 

VOID FRACTION — Calculated void fraction of the exit flow. 

A.33.2 Declaration Structure 

* PROCESS NAME('TPMXC'); 
TPMXC: PROC( TPMX_P, GAS_P, LIQ_P); 

DCL (TPMX_P,GAS_P,LIQ_P) POINTER; 
DCL 1 TPMX BASED(TPMX_P), 

2 NAME CHARde), 
2 FLCl, 
3 FNAME CHARde), 
3 ID CHARde) VARYING, 
3 AT0M(8) FLOATde), 
3 PROP, 
4 (TEMP,PRES,ENTH,ENTP,QUAL,RHO,VEL,MASS) FL0AT(16), 

3 COMP, 
4 (XAR,XCH4,XCO,XC02,XH,XH2,XH20,XH2S,XK,XKOH,XNO,XN2, 
XO,XOH,X02,XS02,XHCL,XCH30H,XC,XCOS,XNH3,XS,XCL) FL0ATd6), 

3 SOL, 
4 WTF FLOATde), 



136 

2 FLC2, 
3 FNAME CHARde), 
3 ID CHARde) VARYING, 
3 AT0M(8) FLOATde), 
3 PROP, 

4 (TEMP,PRES,ENTH,ENTP,QUAL,RHO,VEL,MASS) FL0AT(16), 
3 COMP, 
4 ( XAR, XCH4 , XCO, XC02 , XH, XH2 , XH20, XH2S, XK, XKOH, XNO, XN2 , 
XO,XOH,X02,XS02,XHCL,XCH30H,XC,XCOS,XNH3,XS,XCL) FL0AT(16), 

3 SOL, 

4 WTF FLOATde), 
2 PARM, 

3 PRES_OUT_OPTION CHAR(3), 
3 PRES_DROP FLOAT(ie), 
3 DP_FRAC FLOATde), 
3 SLIP_RATIO FLOATde), 
3 TEMP_DIFF FL0AT(16), 
3 PRES_DIFF_IN FLOATde), 
3 VOID_FRACTION FLOATde); 

DCL (H_EXIT,PRES_COM,F) FLOAT(ie); 
DCL GP ENTRY; 
DCL GAS BASED(GAS_P) LIKE FLCl; 
DCL LIQ BASED(LIQ_P) LIKE FLC2; 
DCL (ABS, MAX, MIN) BUILTIN; 
DCL SOV ENTRY( FLOAT(ie), FLOAT(ie), FIXED BIN(15), 

FLOATde), FLOATde), FIXED BIN(15), FIXED BINdS), CHAR(8)); 
DCL I FIXED BIN(IS); 

Save the inlet flows. 

FLCl = GAS; 
FLC2 = LIQ; 

Calculate the exit pressure of both flows, based on the pressure option, PRES_OUT_ 
OPTION; the fractional pressure drop, DP FRAC; and any specified pressure drop, PRES 
DROP. 

PRES_DIFF_IN=GAS.PRES-LIQ.PRES; 
PRES_COM=MIN(GAS.PRES,LIQ.PRES); 
IF PRES_OUT_OPTION='MIX' THEN 

PRES_COM=( 1E2*PRES_C0M+MAX(GAS. PRES , LIQ. PRES)) / 1 0 l E O ; 
FLCl.PRES =(1.-PARM.DP_FRAC)*PRES_C0M-PARM.PRES_DR0P; 
FLC2.PRES = FLCl .PRES; 

Calculate the exit gas velocity, based on the specified slip ratio. 

FLCl.VEL =PARM.SLIP_RATIO*LIQ.VEL; 
FLC2.VEL =LIQ.VEL; 

Calculate the exit enthalpy of the gas-liquid mixture, based on conservation of energy 

and the change in velocities. 



137 

H_EXIT =GAS.MASS * (GAS.ENTH+0.5*(GAS.VEL**2-FLC1.VEL**2)) 
+LIQ.MASS * (LIQ.ENTH+0.5*(LIQ.VEL**2-FLC2.VEL**2)); 

Determine the enthalpies of the gas and liquid by iterating over the gas enthalpy. Given 
a gas enthalpy value, the temperature can be obtained from the properties code. The 
liquid temperature is obtained from the specified temperature difference, and then the 
liquid enthalpy is obtained. When the combined mixture's enthalpy is equal to the 
previously calculated exit enthalpy, the iterations are stopped. 

DO 1=1 TO 20; 
CALL GP(NAME,FLC1,10B); 
FLC2.TEMP=FLC1.TEMP-PARM.TEMP_DIFF; 
CALL GP(NAME,FLC2,1B); 
F=H_EXIT-FLC1.MASS*FLC1.ENTH-FLC2.MASS*FLC2. ENTH; 
CALL S0V(FLC1. ENTH, F, I , l E 3 , l E - 3 , 2 0 , 0 , ' T P M X ' ) ; 

END; 

Calculate the exit void fraction for printout. 

V0ID_FRACTI0N=1./(1. + FLC2.MASS*FLC1.RH0*FLC1 .VEL/ 
(FLCl.MASS*FLC2.RH0*FLC2.VEL)); 

Save the exit flows. 

GAS=FLC1; 
LIQ=FLC2; 
RETURN; 

TPMXOUT: ENTRY( TPMX_P ) ; 
PUT SKIP EDITC ' ,NAME)(C0L(4),A) 

( ' v o i d f r a c . =',VOID_FRACTION, 
'SLIP RATIO =',PARM.SLIP_RATIO,'TEMP DIFF =',PARM.TEMP_DIFF, 
'PRES DROP =',PARM,PRES_DROP,'DP_FRAf =',PARM.DP_FRAC) 

( C O L ( 1 0 ) , A , E ( 1 2 , 5 ) ) ; 
IF ABS(PARM.PRES_DIFF_IN)>0.1 THEN 

PUT E D I T C * * * * WARNING * * * * ' , ' I N L E T PRES DIFF =',PARM.PRES_DIFF_IN) 
( C O L ( 1 0 ) , A , C O L ( 4 0 ) , A , E ( 1 0 , 3 ) ) ; 

END TPMXC; 

A.34 TWO-PHASE NOZZLE MODEL 

A.34.1 Description of Model 

The two-phase, two-component nozzle model (TPNZ) requires two pass-through 
flows of the generic types GAS and LIQ. The first flow represents the gaseous 
component; the second, the liquid component. The parameters of the TPNZ model are as 
follows: 

EFFICIENCY - Specified efficiency of the nozzle, defined as the ratio 
of the actual change in enthalpy across the nozzle to the isentropic 
enthalpy change. 



138 

EXIT PRES — Specified exit pressure from the nozzle. 

SLIP RATIO — Specified ratio of the gas velocity to the liquid velocity 
at the nozzle exit. 

TEMP DIFF — Specified difference in temperature between the liquid 
and the gas at the nozzle exit. 

LENGTH — Specified length of the nozzle. 

GRAV_ANGLE — Specified angle between the nozzle and the 
gravitational field. 

VOIDFRACTION — Calculated void fraction of the flow at the nozzle 
exit. 

A.34.2 Declaration Structure 

* PROCESS NAMECTPNZC'); 
TPNZC: PROC( TPNZ_P, GAS_P, LIQ_P); 

DCL (TPNZP, GAS_P, LIQ_P) POINTER; 
DCL 1 TPNZ BASED(TPNZ_P), 

2 NAME CHARde), 
2 FLCl, 
3 FNAME CHARde), 
3 ID CHARde) VARYING, 
3 AT0M(8) FLOAT(ie), 
3 PROP, 
4 (TEMP,PRES,ENTH,ENTP,QUAL,RHO,VEL,MASS) FLOAT(ie), 

3 COMP, 
4 (XAR,XCH4,XCO,XC02,XH,XH2,XH20,XH2S,XK,XKOH,XNO,XN2, 
XO,XOH, X02,XS02,XHCL,XCH30H,XC, XCOS,XNH3,XS, XCL) FLOATde ), 

3 SOL, 
4 WTF FLOATde), 

2 FLC2, 
3 FNAME CHARde), 
3 ID CHARde) VARYING, 
3 AT0M(8) FLOATde), 
3 PROP, 
4 (TEMP,PRES,ENTH,ENTP,QUAL,RHO,VEL,MASS) FLOAT(ie), 

3 COMP, 
4 (XAR,XCH4,XCO,XCO2,XH,XH2,XH20,XH2S,XK,XKOH,XNO,XN2, 
XO,XOH,X02,XS02,XHCL,XCH30H,XC,XCOS,XNH3,XS,XCL) FLOATde), 

3 SOL, 
4 WTF FLOATde), 

2 PARM, 
3 EFFICIENCY FLOATde),• 
3 EXIT_PRES FLOATde), 
3 SLIP_RATIO FLOATde), 



139 

3 TEMP_DIFF FLOATde), 
3 LENGTH FLOATde), 
3 GRAV_ANGLE FLOATde), 
3 VOID_FRACTION FLOATde); 

DCL (F,S_TOTAL,H_EXIT,H_AVAILABLE,PWORK) FLOAT(ie); 

DCL GAS BASED(GAS_P) LIKE FLCl; 
DCL LIQ BASED(LIQ_P) LIKE FLC2; 
DCL GP ENTRY; 
DCL SOV ENTRY( FL0AT(16), FLOAT(ie), FIXED BIN(15), 

FLOAT(ie), FLOATde), FIXED BIN(15), FIXED BINdS) , CHAR(8)); 
DCL I FIXED BINdS) ; 

Save the inlet flows. 

FLC1=GAS; 
FLC2=LIQ; 

Set the exit pressure to the specified value. 

GAS.PRES =PARM.EXIT_PRES; 
LIQ.PRES =PARM.EXIT_PRES; 

Calculate the gas-liquid mixture's entropy. 

S_TOTAL =GAS.MASS*GAS.ENTP+LIQ.MASS*LIQ.ENTP; 

Determine the conditions of the flows after an isentropic expansion to the exit pressure 
by iterating over the gas enthalpy. For each iteration, given a value for the gas 
enthalpy, the gas temperature is obtained. The liquid temperature is then obtained from 
the specified liquid-gas temperature difference. The properties code is then called for 
the liquid to determine its entropy. The combined mixture's entropy is calculated, and 
the one-dimensional equation solver is then used to give the next iterative value of the 
gas enthalpy to force the calculated mixture entropy to equal the inlet mixture entropy. 

DO 1=1 TO 2 1 ; 
CALL GP(NAME,GAS,10B); 
LIQ.TEMP=GAS.TEMP+PARM.TEMP_DIFF; 
CALL GP(NAME,LIQ,1B); 
F=GAS.MASS*GAS.ENTP+LIQ.MASS*LIQ.ENTP-S_TOTAL; 
CALL SOV(GAS.ENTH,F,I,1E3,1E-3,21,0, 'TPNZl'); 

END; 

The total available enthalpy change can be obtained by subtracting the isentropic 
mixture enthalpy from the inlet mixture enthalpy. 

H_AVAILABLE =GAS.MASS*(FLC1.ENTH-GAS.ENTH) 
+LIQ.MASS*(FLC2.ENTH-LIQ.ENTH); 



140 

Using the specified efficiency of the nozzle, the mixture exit enthalpy is determined. 

H_EXIT =FLC1.MASS*FLC1.ENTH+FLC2.MASS*FLC2.ENTH 
-PARM.EFFICIENCY*H_AVAILABLE; 

The exit enthalpies of the individual gas and liquid flows can be obtained in much the 
same way that the isentropic conditions were obtained. An iteration is performed over 
the gas enthalpy. Using the properties code, the gas temperature, liquid temperature, 
and liquid enthalpy are obtained. The mixture enthalpy is then determined and used by 
the one-dimensional equation solver to determine the next iterative value of the gas 
enthalpy necessary to force the mixture enthalpy to equal the exit enthalpy. 

DO 1=1 TO 21; 
CALL GP(NAME,GAS,10B); 
LIQ.TEMP=GAS.TEMP+PARM.TEMP_DIFF; 
CALL GP(NAME,LIQ,1B); 
F=GAS.MASS*GAS.ENTH+LIQ.MASS*LIQ.ENTH-H_EXIT; 
CALL SOV(GAS.ENTH,F,I,1E3,1E-3,21,0,'TPNZ2'); 

END; 

The liquid exit velocity is determined, based on conservation of energy. The total 
amount of energy that can be converted to a velocity head is determined from the actual 
enthalpy change and from any additional potential energy change due to the gravitational 
field. 

PWORK =H_AVAILABLE*PARM.EFFICIENCY 
+(GAS.MASS+LIQ.MASS)*9.80e65*LENGTH*COSD(GRAV_ANGLE) 
+.S*(GAS.MASS*GAS.VEL**2 
+LIQ.MASS*LIQ.VEL**2); 

If PWORK is very small, then for safety the liquid velocity is simply assigned a small 
value. Otherwise, the liquid velocity is calculated such that the combined gas and liquid 
velocity head is equal to PWORK. (The specified slip ratio is also used here to determine 
the gas velocity in terms of the liquid velocity.) 

IF PWORK < lE-e THEN 
LIQ.VEL=lE-6; 

ELSE 

LIQ.VEL=SQRT(2.*PWORK/(GAS.MASS*PARM.SLIP_RATIO**2+LIQ.MASS)); 

The gas velocity is set, based on the slip ratio. 

GAS.VEL =PARM.SLIP_RATIO*LIQ.VEL; 

The void fraction is calculated for output. 

VOID_FRACTION=l./(l.+Liq.MASS*GAS.RHO*GAS.VEL/ 
(GAS.MASS*LIQ.RHO*LIQ.VEL)); 



141 

The exit flow conditions are saved. 

FLC1=GAS; 
FLC2=LIQ; 
RETURN; 

TPNZOUT: ENTRY( TPNZ_P ); 
PUT SKIP EDITC ',NAME)(C0L(4),A) 
('Efficiency =',PARM.EFFICIENCY,'VOID FRAC =',VOID FRACTION, 
'SLIP RATIO=',SLIP_RATIO,'TEMP DIFF=',TEMP DIFF, ~ 
'LENGTH =',LENGTH, 'GRAV ANGLE =',GRAV ANGLE) 

(COL(10),A,E(12,S)); 
END TPNZC; 

A.35 GENERAL PROPERTIES CODE 

* PROCESS NAME('GPIN'); 
GPIN: PROC(GP_P); 

DCL GP_P POINTER; 
DCL 1 GP BASED(GP_P), 

2 NAME CHARde), 
2 PARM, 
3 PRINT FIXED BINdS), 

1 FLOW CONN, 
2 NAME CHARde), 
2 ID CHARde) VARYING, 
2 AT0M(8) FLOAT(ie), 
2 PROP, 
4 (T,P,H,S,Q,R,V,M) FL0ATd6), 

2 COMP, 
4 (XAR,XCH4,XCO,XC02,XH,XH2,XH20,XH2S,XK,XKOH,XNO,XN2, 
XO,XOH,X02,XS02,XHCL,XCH30H,XC,XCOS,XNH3,XS,XCL) FL0AT(16), 

2 SOL, 
4 WTF FLOATde), 

1 MAT BASED(M_PTR), 
2 ID CHARde) VARYING, 
2 (PTR,P_PTR) POINTER, 

(NULL,SUBSTR,INDEX) BUILTIN, 
(GASIN,GASWK) ENTRY, 
(STMHP,STMSP,STMTP,STMSAT) ENTRY, 
(THRIN,THRHP,THRSP,THRTP,THRSAT) ENTRY, 
(SODHP,SODTP,SODSAT) ENTRY, 
(POTHP,POTTP,POTSAT) ENTRY, 
(LIQIN,LIQWK) ENTRY, 
(JANIN,JANWK) ENTRY, 

(THR_PTR,JAN_PTR,LIQ PTR) POINTER INIT(NULL) STATIC, 
GPPRT FIXED BINdS) EXT, 
LABEL CHARde), 
CODETYPE CHARde) VARYING, 
M_PTR POINTER, 

(HL,HS,PCRIT,D1,D2,D3,D4,TSAT) FL0ATd6). 
(I,SW) FIXED BINdS); 



142 

CALL GASIN; 
GPPRT=CP.PRINT; 
RETURN; 

GP: ENTRY(LABEL,FLOW,SW); 

CODETYPE=SUBSTR(FLOW.ID,I,INDEX(FLOW.ID|I'-','-')-i); 
SELECT(CODETYPE); 

WHENCH20') 
DO; 

FLOW.Q=0.0; 
SELECT(SW); 
WHEN(l) CALL STMTP(FLOW.T,FLOW.P.FLOW.H.FLOW.S.FLOW.R); 
WHEN(2) CALL STMHP(FLOW.H.FLOW.P.FLOW.T.FLOW.S.FLOW.R.FLOW.Q); 
WHEN(3) CALL STMSP(FLOW.S.FLOW.P,FLOW.T,FLOW.H,FLOW.R,FLOW.Q); 

END; 
END; 

WHEN('GAS') 
DO; 

Q=l.O; 
CALL GASWK ( LABEL, FLOW. COMP, FLOW. ATOM, FLOW. T, FLOW. P, FLOW. H, 

FLOW.S,FLOW.R,FLOW.WTF,SW); 
END; 

W H E N C L I Q ' ) 

DO; 
DO M_PTR=LIQ_PTR REPEAT(MAT.P_PTR) WHILE(M_PTR=NULL); 

IF FLOW.ID=MAT.ID THEN 
GO TO LIQCAL; 

END; 
ALLOC MAT SET(M_PTR); 
MAT.P_PTR=LIQ_PTR; 
LIQ_PTR=M_PTR; 
MAT.ID=FLOW.ID; 
CALL LIQIN(MAT.PTR,MAT.ID); 

LIQCAL; 
CALL LIQWK(MAT.PTR,FLOW.T,FLOW.P,FLOW.H,FLOW.S,FLOW.R,FLOW.Q,SW); 

END; 
WHEN('JAN') 

DO; 

DO M_PTR=JAN_PTR REPEAT(MAT.P_PTR) WHILE(M_PTR=NULL); 
IF FLOW.ID=MAT.ID THEN 
GO TO JANCAL; 

END; 
ALLOC MAT SET(M_PTR); 
MAT.P_PTR=JAN_PTR; 
JAN_PTR=M_PTR; 
MAT.ID=FLOW.ID; 
CALL JANIN(MAT.PTR,MAT.ID); 

JANCAL; 

CALL JANWK(MAT.PTR,FLOW.T,FLOW.P,FLOW.H,FLOW.S,FLOW.R,FLOW.Q,SW); 
END; 

WHENCTHR') 
DO; 
FLOW.Q=0; 
DO M_PTR=THR_PTR REPEAT(MAT.P_PTR) WHILE(M PTR=NULL); 
IF FLOW.ID=MAT.ID THEN 



143 

GO TO THRCAL; 
END; 
ALLOC MAT SET(M_PTR); 
MAT.P_PTR=THR_PTR; 
THR_PTR=M_PTR; 
MAT.ID=FLOW.ID; 
CALL THRIN(MAT.PTR,MAT.ID); 
THRCAL: 
SELECT(SW); 

WHENd) CALL THRTP(MAT.PTR,FLOW.T,FLOW.P,FLOW.R,FLOW.H,FLOW.S. 
D1,D2,D3); ' 

WHEN(2) CALL THRHP(MAT.PTR,FLOW.H,FLOW.P,FLOW.T,FLOW.R, 
FLOW.S,FLOW.Q); 

WHEN(3) CALL THRSP(MAT.PTR,FLOW.S,FLOW.P,FLOW.T,FLOW.R, 
FLOW.H,FLOW.Q); 

END; 
END; 

WHEN('SOD') 
DO; 
SELECT(SW); 

WHENd) CALL SODTP(FLOW.T,FLOW.P,FLOW.R,FLOW.H,FLOW.S, 
D1,D2,D3); 

WHEN(2) CALL SODHP(FLOW.H,FLOW.P,FLOW.T,FLOW.R, 
FLOW.S,FLOW.Q); 

OTHERWISE 
PUT SKIP EDITC OPTION NOT AVAILABLE FOR ',FLOW.ID) 

(A,A); 
END; 

END; 
WHEN('POT') 

DO; 
SELEGT(SW); 
WHENd) CALL POTTP(FLOW.T,FLOW.P,F,LOW.R,FLOW.H,FLOW,S, 
D1,D2,D3); 

WHEN(2) CALL POTHP(FLOW.H,FLOW.P,FLOW.T,FLOW.R, 
FLOW.S,FLOW.Q); 

OTHERWISE 
PUT SKIP EDITC OPTION NOT AVAILABLE FOR ',FLOW.ID) 

(A,A); 
END; 

END; 
OTHERWISE 

DO; 
PUT EDITC UNRECOGNIZED FLOW TYPE: ',FLOW.NAME, ' USED AT ',LABEL) 

(SKIP,A,A,A,A); 
STOP; 

END; 
END; 
IF GPPRT>0 THEN 
PUT EDIT(LABEL,FLOW.NAME,FLOW.ID, 'T=' ,FLOW.T, 'P=' ,FLOW.P, 

'H=',FLOW,H,'S=',FLOW.S,'M=',FLOW.M,'SW=',SW) 
(COL(2),Ad6),A(ie),A(4),X(2),5 (A(2) ,E(11,4) ,X(2)) .A,F(2)); 

RETURN; 

GPSAT: ENTRY(LABEL,FLOW.PCRIT.HL.HS); 



144 

CODETYPE=SUBSTR(FLOW.ID.I.INDEX(FLOW.ID|I '- ' . ' - ' ) - I ) ; 
SELECT(CODETYPE); 

WHEN('H2O') CALL STMSAT(FLOW.P,PCRIT,HL,HS); 
WHENCTHR') 

DO; 
DO M_PTR=THR_PTR REPEAT(MAT.P_PTR) WHILE(M_PTR=NULL); 
IF FLOW.ID=MAT.ID THEN 
GO TO THRSATCAL; 

END; 
ALLOC MAT SET(M_PTR); 
MAT.P_PTR=THR_PTR; 
THR_PTR=M_PTR; 
MAT.ID=FLOW.ID; 
CALL THRIN(MAT.PTR,MAT.ID); 
THRSATCAL: 
CALL THRSAT(MAT.PTR,FLOW.P.PCRIT,TSAT); 
CALL THRTP(MAT.PTR,TSAT,FLOW.P,D1,HL,D2,D3,HS,D4); 

END; 
WHENCSOD') 

DO; 
CALL SODSAT(FLOW.P,PCRIT,TSAT); 
CALL SODTP(TSAT,FLOW.P,D1,HL,D2,D3,HS,D4); 

END; 
WHEN('POT') 

DO; 
CALL P0TSAT(FLOW.P,PCRIT,TSAT); 
CALL POTTP(TSAT,FLOW.P,D1,HL,D2,D3,HS,D4); 

END; 
OTHERWISE 

DO; 
PUT EDITC NO SATURATION PROPERTIES FOR FLOW TYPE: ',FLOW.NAME, 

' USED AT ',LABEL) 
(SKIP,A,A,A,A); 

STOP; 
END; 

END; 
END GPIN; 



145 

APPENDIX B: JOB-CONTROL LANGUAGE 
FOR IBM SYSTEM AT ANL 



146 



147 

APPENDIX B: JOB-CONTROL LANGUAGE 
FOR IBM SYSTEM AT ANL 

The preceding chapters (and Appendix A) have dealt with the data that must 
appear within the STRUCT file. This file is usually the only file that must be changed 
when running a new systems-analysis problem. However, other files are used by the 
SALT code in the process of compiling the PL/I driver that represents the system under 
consideration. Essentially, these other files are temporary work files or output files and 
are not usually saved from job to job. 

Three major steps are required in running the SALT system code after the 
STRUCT file has been prepared. The first step is to run the SALT code itself and 
translate the STRUCT file into a PL/I code; the second step is to compile this code, and 
the third step is to execute the PL/I code. The performance of these three steps has 
been conveniently arranged in an instream job-control-language (JCL) procedure called 
SYSTEM for use on the ANL computer. The JCL using this procedure is as follows; 

//JOBNAME JOB TIME=2,REGION=350K,CLASS=W,MSGCLASS=W 
//*MAIN 0RG=LOCAL,SYSTEM=(S33A,S33B),LINES=5 
//SYSTEM PROC 
//ONE EXEC PGM=SALT 
//STEPLIB DD DSN=Bxxxxx.SALT.LOAD,DISP=SHR 
//STRUCT DD DDNAME=STRUGIN 
/ /INTF DD DSN=Bxxxxx.SALT.INTF,DISP=SHR 
//SYSDRV DD UNIT=SASCR,SPACE=(TRK,(2,1)),DISP=(NEW,PASS) 
//SYSPRINT DD SYSOUT=*,DCB=(RECFM=VBA,LRECL=137,BLKSIZE=1511) 
//PLO EXEC PGM=IEL0AA,PARM='NS,NA,NX,NAG,NOESD,NSTG,NOF,NOP' 
//STEPLIB DD DSN=PLI.OPT.LINKLIB,DISP=SHR 
//SYSIN DD DSN=*.ONE.SYSDRV,DISP=(OLD,DELETE) 
//SYSLIN DD UNIT=SASCR,SPACE=(CYL,6), 
// DISP=(NEW,PASS),DCB=(REGFM=FB,LRECL=80,BLKSIZE=3120) 
//SYSPRINT DD SYS0UT=*,DCB=(RECFM=VBA,LRECL=137,BLKSIZE=1S11) 
//SYSPUNCH DD DUMMY 
//SYSUTl DD SPACE=(CYL,e),UNIT=(SASCR) 
//TWO EXEC PGM=LOADER,REGION=150K,COND=(9,LT,PLO) 
//SYSLIB DD DSN=SYS1.PLIBASE,DISP=SHR 
// DD DSN=Bxxxxx.SALT.LOAD,DISP=SHR 
//SYSLIN DD DSN=*.PLO.SYSLIN,DISP=(OLD,DELETE) 
//SYSLOUT DD SYS0UT=*,DCB=(RECFM=FB,LRECL=121,BLKSIZE=1573) 
//SYSPNCH DD DUMMY 
//SYSPRINT DD SYSOUT=*,DCB=(RECFM=VBA,LRECL=137,BLKSIZE=1511) 
//SYSPUNCH DD DUMMY 
// PEND 
/ / EXEC SYSTEM 
//ONE.STRUCIN DD * 

(contents of f i le STRUCT) 

These JCL lines, which carry out the three basic steps referred to above, are 
briefly described here. 



148 

The first line of any JCL, the JOB card, specifies the maximum time (in minutes) 
that a job is permitted to run on the computer and the amount of main core used. The 
parameter CLASS defines the priority of the job and may take the values of U (for 
highest priority), W (for normal priority), X (for overnight service), or Y (for weekend 
service). The MSGCLASS parameter may be set to W to fetch the output at the 
computer terminal or to A to print the output on a line printer. 

The second line specifies the on-line printer destinations, the computer used, and 
the maximum number of output lines. If a large number of parameter sweeps are to be 
performed, the LINES parameter (which specifies the maximum number of lines in 
thousands) may need to be increased. 

The next line specifies the beginning of the SYSTEM procedure. The following 
group of six lines carries out the first step, the translation of the STRUCT file. Here. 
STEPLIB is the data set containing the SALT code. INTF is the interface file. SYSDRV is 
the output file containing the generated PLI code, and SYSPRINT contains a reflection of 
the STRUCT file and possible error messages. 

The next eight lines, starting with / /PLO, accomplish the compilation of the PLI 
code. In this case, STEPLIB refers to the data set containing the PLI compiler. SYSIN is 
the PLI code generated in the first step. SYSLIN is the compiled code, SYSPRINT 
contains error messages from the compilation, SYSPUNCH is not used, and SYSUTl is a 
work file used by the compiler. 

The next group of eight lines carries out the final step required in running the 
compiled code. The SYSLIB file contains the concatenation of several data sets 
representing the components of the system and various IBM-supplied procedures, such as 
SIN, COS, ABS, e tc . (These are in SYSl.PLIBASE for PLI codes). The component models 
and other mathematical procedures are referenced by the next two lines. Here, SYSLIN 
refers to the compiled PLI code, SYSLOUT contains the loader map and loader error 
messages, SYSPNCH and SYSPUNCH are not used, and SYSPRINT contains the major 
output for the system analysis. 

Finally, the next two lines close the instream procedure (// PEND) and execute 
this procedure (// EXEC SYSTEM). For most systems-analysis problems, the above JCL 
need not be changed from job to job. The rest of the JCL represents the STRUCT file, 
preceded by the //ONE.STRUCIN DD * line. 



Internal: 

149 

Distribution for ANL/FE-85-4 

J.G. Asbury 
F.C. Bennett 
M.J. Bernard 
G.K. Berry (30) 
S.K. Bhattacharyya 
D.J. Bingaman 
L.W. Carlson 
K.C. Chang 
S.U. Choi 
L.S. Chow 
J.M. Cook 
E.J. Croke 
E.J. Daniels 
E.M. Dean 
C B . Dennis 
D.R. Diercks 
J.J. Dzingel 
H.K. Geyer (10) 
R.F. Giese 

S.J. Grammel 
W. Harrison 
J.E. Helt 
D.R. Henley 
H.S. Huang 
J .F. Koenig 
M. Krumpelt 
K.D. Kuczen 
J. Lazar 
C. Lee 
G.P. Lewis 
R.A. Lewis 
C D . Livengood 
R.W. Lyczkowski 
K.S. Macal 
V. Minkov 
K.M. Myles 
O.O. Ohlsson 
C B . Panchal 

CV. Pearson 
M. Petrick 
G.N. Reddy 
J .J . Roberts 
N.F. Sather 
W.W. Schertz 
R. Sekar 
Y.W. Shin 
A.J. Sistino 
T.G. Surles 
C.E. Swietlik 
A. Thomas 
S.P. Vanka 
C S . Wang 
A.M. Wolsky 
ANL Contract Copy 
ANL Libraries (2) 
ANL Patent Department 
TIS Files (6) 

External: 

U.S. Department of Energy Technical Information Center, for distribution 
per UC-32 and UC-90 (242) 

Manager, U.S. Department of Energy Chicago Operations Office (DOE-CH) 
Energy and Environmental Systems Division Review Committee: 

R.S. Berry, The University of Chicago 
G.E. Dials, Dials and Assoc , Santa Fe, N.M. 
B.A. Egan, Environmental Research and Technology, Inc., Concord, Mass. 
W.H. Esselman, Electric Power Research Institute, Palo Alto, Calif. 
M.H. Kohler, Bechtel National, Inc., San Francisco 
J.W. McKie, University of Texas, Austin 
N.C. Mullins, Virginia Polytechnic Institute and State University, Blacksburg 
J.J. Stukel, University of Illinois, Urbana 
J.J. Wortman, North Carolina State University, Raleigh 

R.D. Andrews, Rocky Mountain Energy, Broomfield, Colo. 
R. Bajura, Morgantown Energy Technology Center , U.S. Department of Energy, 

Morgantown, W.Va. 
J.M. Begovich, Oak Ridge National Laboratory, Oak Ridge, Tenn. 
S.K. Beer. Morgantown Energy Technology Center . U.S. Department of Energy, 

Morgantown, W.Va. 
S. Biondo, Office of Fossil Energy, U.S. Department of Energy, Washington, D.C. 



150 

H.H. Blecker, ICARUS Corp., Rockville, Md. 
D.P. Bloomfield, PSI/Systems, Andover, Mass. 
A. Boni, Physical Sciences, Inc., Andover. Mass. 
H. Branover. Ben-Gurion University. Tel Aviv. Israel 
D. L. Breton, Dow Chemical USA, Plaquemine, La. 
R. Carabetta, Pittsburgh Energy Technology Center, U.S. Department of Energy, 

Pittsburgh 
P. Chung, University of Illinois, Chicago 
J.G. Cleland, Research Triangle Institute, Research Triangle Park, N.C. 
K. Craig, Morgantown Energy Technology Center, U.S. Department of Energy, 

Morgantown, W.Va. 
J. Cutting, Gilbert Associates, Reading, Penn. 
K.J. Daniel, General Electric Corporate R&D, Schenectady, N.Y. 
S. Divakaruni, Electric Power Research Institute. Palo Alto, Calif. 
J.S. Dweck, J.S. Dweck, Inc., Denver. Colo. 
A. Dyson. Tennessee Valley Authority. Chattanooga, Tenn. 
J. Elliott, Massachusetts Institute of Technology, Cambridge, Mass. 
G. Enyedy, PDQ$, Inc., Gates Mills, Ohio 
M. Faist, Radian Corp., Austin. Texas 
L.T. Fan. Kansas State University 
J. Fillo. Environmental Research and Technology, Inc.. Pittsburgh 
J. Fisher, Stone and Webster, Boston 
H.J. Gadiyar, Morgantown Energy Technology Center, U.S. Department of Energy, 

Morgantown, W.Va. 
P.W. Gallier, ASPEN Technology, Inc., Cambridge, Mass. 
G. Garrison, University of Tennessee Space Institute, Tullahoma, Tenn. 
E.W. Geller, Flow Industries, Inc., Kent, Wash. 
J.H. Gibbons, Office of Technology Assessment, U.S. Congress 
F.D. Gmeindl, Morgantown Energy Technology Center, U.S. Department of Energy, 

Morgantown, W.Va. 
L.E. Graham, Morgantown Energy Technology Center, U.S. Department of Energy, 

Morgantown W.Va. 
H. Hagler, Hagler, Bailly, and Co., Washington, D.C. 
K. Haynes, Foster Wheeler Synfuels Corp., Livingston, N.J. 
J. Henry, University of Tennessee at Chattanooga 
S.C. Hill, Los Alamos National Laboratory, Los Alamos, N.M. 
R. Holmann, Westinghouse Electric Corp., Pittsburgh 
F. Honea, Grand Forks Project Office, Grand Forks, N.D. 
D.A. Horazak, Westinghouse Electric Corp., Concordville, Penn. 
W. Jackson, HNJ Corp., Washington, D.C. 
B. Joseph, Washington University, St. Louis, Mo. 
D.E. Kash, University of Oklahoma 
A.A. Khan, Union Carbide Corp., Oak Ridge, Tenn. 
S. Knoke, Flow Industries, Inc., Kent, Wash. 
D. Krastman, Pittsburgh Energy Technology Center, U.S. Department of Energy, 

Pittsburgh 
H. Link, Solar Energy Research Institute, Golden, Colo. 
T. Littert , Westinghouse R&D. Pittsburgh 



151 

P.S. Lowell. P.S. Lowell Co.. Inc.. Austin. Texas 
C Mah, Aerojet Energy Conversion Co.. Sacramento. Calif. 
T. McCIoskey. Notre Dame College. South Euclid. Ohio 
W.J. McMichael, Research Triangle Institute. Research Triangle Park, N.C. 
M.C. Millman, Halcon Computer Technology, New York 
L. Miller, U.S. Department of Energy, Germantown, Md. 
L. Mims, Chicago 
L.M. Naphtali, U.S. Department of Energy, Washington, D.C. 
S.A. Newman, Foster Wheeler Energy Corp., Livingston, N.J. 
J. Notestein, Morgantown Energy Technology Center, U.S. Department of Energy, 

Morgantown, W.Va. 
T. O'Brien, Morgantown Energy Technology Center, U.S. Department of Energy, 

Morgantown, W.Va. 
A. Pappano, Pasadena, Calif. 
M. Paskin, Allison Gas Turbine, Indianapolis, Ind. 
J. Patten, Gilbert Associates, Reading, Penn. 
L. Perini, Applied Physics Lab, Johns Hopkins Laboratory, Laurel, Md. 
M. Perlmutter, U.S. Department of Energy, Pittsburgh 
T.T. Philips, Los Alamos National Laboratory, Los Alamos, N.M. 
R. Piccirelli, Wayne State University, Detroit. Mich. 
E. Pierson. Purdue University-Calumet. Hammond. Ind. 
A.A. Pitrolo. Morgantown Energy Technology Center. U.S. Department of Energy. 

Morgantown, W.Va. 
P. Probert. Babcock and Wilcox Co., Barberton, Ohio 
G.H. Quentin, Electric Power Research Institute, Palo Alto, Calif. 
R. Raghavan. Foster Wheeler Energy Corp.. Livingston. N.J. 
M.W. Reed. Tennessee Valley Authority. Chattanooga, Tenn, 
I.H. Rinard. Halcon SD Group. New York 
L. Saroff. Dravo Engineers. Inc.. Pittsburgh 
R. Shinnar, City College of New York • 
CH. Sink. Morgantown Energy Technology Center, U.S. Department of Energy, 

Morgantown, W.Va. 
D.P. Smith, General Electric Corporate R&D, Schenectady, N.Y. 
I. Smith, The City University, London, U.K. 
G. Steinfeld, Science Applications. Inc.. Morgantown. W.Va. 
S.S. Stern. Halcon SD Group. New York 
K. Stone. Morgantown Energy Technology Center, U.S. Department of Energy, 

Morgantown, W.Va. 
B. Svrcek, University of Calgary. Alberta 
D. Swink. Office of Fossil Energy. U.S. Department of Energy, Washington, D.C. 
J. Templemeyer, Southern Illinois University, Carbondale, 111. 
W.C. Thomas, Radian Corp., Austin, Texas 
W. Trzaskoma, Gilbert Assoc, Inc., Reading, Penn. 
V.S. Underkoffler, Gilbert Assoc, Inc., Reading, Penn. 
S.R. Vatcha, Ashland Oil, Inc., Ashland, Ky. 
K. Vyas, Morgantown Energy Technology Center, U.S. Department of Energy, 

Morgantown, W.Va. 
R.E. Weinstein, Gilbert/Commonwealth, Reading, Penn. 



152 

J. Weisman, University of Cincinnati, Ohio 
W. Wells, Center for Research on Sulfur in Coal, Champaign, 111. 
G. Wheeler, U.S. Department of Energy, Germantown, Md. 
F. Wong, Electric Power Research Institute, Palo Alto, Calif. 
S. Wu, University of Tennessee Space Institute, Tullahoma, Tenn. 
R.K. Young, Stearns-Catalytic, Inc., Homer City, Penn. 
J. Zaranek, U.S. Steel Corp., Monroeville, Penn. 



AHGONNE NATIONAL U B WEST 

TO89- y 


